
Software Design Document of Vigil

Hussein ElSherif, Khaled Salem, Mahmoud ElShennawy

June 15, 2017

1 Introduction

1.1 Purpose

This software design document describes the architecture and system design of
our graduation project VIGIL, which is an abnormal behavior detection system
aimed at the detection of abnormal behaviors related to car theft.
The intended target audience of this document is the committee members for
our graduation project.

1.2 Scope

In this document, we define the architecture and design of Vigil.

1.2.1 Goal

Our goal is to detect a set of predefined abnormal behaviors in real time by
processing over GPU.

1.2.2 Objectives

1. To accurately detect the predefined abnormal behaviors of Vigil that were
stated in the SRS document.
2. To speed up our processing of abnormal behaviors using CUDA cores.

1



1.3 Overview

This is our SDD for our graduation project, and it’s composed as follows:

1. Reference Material.

2. Definitions and Acronyms.

3. System Overview.

4. System Architecture.

• Architectural Design.

• Decomposition Description.

• Design Rationale.

5. Data Design.

• Data Description.

• Data Dictionary.

• Component Design.

6. Human Interface Design

• Screen Images.

• Screen Objects and Actions.

7. Requirements Matrix.

8. Appendices.

9. References.

2



1.4 Definitions and Acronyms

Term Definition

HOG Histogram of Oriented Gradients

ROI Region Of Interest

SVM Support Vector Machines

2 System Overview

Vigil is one of the very first surveillance systems that offer the concept of auto-
mated surveillance. Vigil should be able to detect a trained data set of abnormal
behaviors. Vigil is targeted at the detection of abnormal behaviors related to
car theft. These actions consist of the following:
1- Hand swings to break glass.
2- Jumping into cars.
3- Loitering.
4- Object swinging to break glass.

Vigil should then proceed to save videos of such behaviors if they were de-
tected in the region of a car, and deploy an alarm along with a visual cue to the
security guard observing the cameras to report the incident.

3



3 System Architecture

3.1 Architecture Design

3.1.1 Architectural Diagram

Figure 1: Architectural Design

4



3.1.2 Logic Layer Pipeline

5



3.2 Sequence Diagrams

1- Action Detection.

2- Loitering Detection

6



3.3 Decomposition Description

3.3.1 Class Diagram

7



3.3.2 Decomposition

Table 1: Interface layer description
Component Description
User Input This handles all user input for changing parameters.
Observer Modification This handles addition of new cameras.
Output This is the output of VIGIL including feedback

Table 2: Logic Layer - Top
Component Description
Authentication Authenticates user’s credentials/Input.
input Handling Applies the changes done by the user to detection parameters.
Pre-Processing Handles resizing, background subtraction, etc on source frames.

Table 3: Logic Layer - Middle
Component Description
Trackers Handles tracking humans for detection application.
Detection Handles detection of abnormal behaviors.

8



Table 4: Logic Layer - Bottom
Component Description
Classification Handles classifying of abnormalities detected in the previous layer.

Table 5: Data Transaction Layer
Component Description
FileManager Handles saving to file system.
Database handler Handles insertion into database.

Table 6: Data storage layer
Component Description
File System The file system of Vigil.
Database The system’s actual database.

3.4 Design Rationale

Layered architecture provides the system with flexibility, maintainability, and
scalability by separating the user interface, from program logic, from data trans-
actions so that we can remove any possible clashes between components.
It also further enables flexibility to the system by allowing different parts to be
developed independently of the others, which boosts flexibility and development
speed.

Advantages:
1- Flexibility.
2- Maintainability.
3- Scalability.
4- Component reuse.

However, it also imposes the following Disadvantages:
1- Slight negative impact on performance.
2- Adds complexity to simple applications.

9



4 Data Design

4.1 Data Description

Video stream: Stored in OpenCV Mat structures.
Features: Stored into a float vector and processed as a 1D array alongside its
label.
Descriptor: Stored into a .yml format file to be used by OpenCV’s SVM de-
scriptors.

Figure 2: Database Design

10



4.2 Database description

4.2.1 AnomalyBehavior

A table containing a list of all abnormal behaviors the system can detect.

Table 7: AnomalyBehavior
Attribute Description
ID ID of the behavior.
Name The name of behavior.

4.2.2 ROI

A table which contains the ROI of the whole system and their parameters.

Table 8: ROI
Attribute Description
ID ROI id.
Xloc ROI’s x location.
Yloc ROI’s y location.
Width Width of ROI.
Height Height of ROI.

4.2.3 AnomaliesDetected

A table which contains a list of the detected anomalies on the system along with
some of its various properties.

Table 9: AnomaliesDetected Description
Attribute Description
ID Entry ID.
CamID ID of camera that detected the anomaly.
Timestamp Time of anomaly detection.
Date Date of anomaly detection.
VideoID ID of the saved video.
FaceLocation Location of the saved Face of suspect.
AnomalyType Type of detected anomaly.

11



4.2.4 Camera

A table which contains a list of all cameras registered on the system along with
their various properties.

Table 10: Camera Description
Attribute Description
ID Cam ID.
URL IP Address of the Cam.
HOGScale Scale multiplier for the trained HOG images.
HitThreshold Hit threshold for HOG detection
numLevels Number of levels in image for HOG detection.
Winstride HOG Parameter
GroupThreshold HoG parameter for grouping detection rectangles.
AuthorID ID of last user who changed CAM settings.
Date Date of last settings update.

4.3 Data Dictionary

Table 11: VigilMainView
Method/Object Method/Object Parameters
VigilMainView() Void
Login() String, String AddObserver
Camera
UpdateObserver Camera, Anomaly.
UpdateObserver Camera
RemoveObserver Camera
GetAnomalies() Void

Table 12: Feed
Method/Object Method/Object Parameters
Feed() Void
SetParameters double Threshold, double scale, int levels, int groupThreshold
resetParameters Void
Update Camera

12



Table 13: AddCamScreen
Method/Object Method/Object Parameters
AddCamScreen() Void
AddCam String ip
AddCam() SliderValue

Table 14: Login
Method/Object Method/Object Parameters
Login() String, String
Login() Void

Table 15: ObserverUSer
Method/Object Method/Object Parameters
Camlist Vector Camera
Cap Video Capture
dbHandler DBHandler
FileMan FileManager
AddCamera() Camera
RemoveCamera() Camera
UpdateView() Camera
UpdateView() Anomaly, Camera
UpdateParams() Camera, HOGParams
GetCameras() Vector Camera
GetAnomalies() Vector Anomaly

Table 16: VIGIL
Method/Object Method/Object Parameters
AlgorithmActions DetectAlgorithm
AlgorithmLoitering DetectAlgorithm
handler DBHandler
FileSystemHandler FileManager
VIGIL() Void
Login() Void
DetectAnomaly() Camera, DetectAlgorithm
SaveAnomaly() Vector
UpdateBackground() Mat

Table 17: Tracker
Method/Object Method/Object Parameters
frame Mat
Background Mat
Tracker() Mat, Mat
Track() Void

13



Table 18: DetectLoitering
Method/Object Method/Object Parameters
frame Mat
timer Long
tracker Tracker
DetectLoitering() Void
Detect() Void

Table 19: DetectSVM
Method/Object Method/Object Parameters
frame Mat
tracker Tracker
svm SVM
DetectorPath String
DetectSVM() String
setFrame() Rect
Detect() Mat

Table 20: Login
Method/Object Method/Object Parameters
Login String uname, String pass

Table 21: Camera
Method/Object Method/Object Parameters
Camera() Void
GetCamera() Void
SetCamera() Void
IP String
Params HOGParams
RegionList ROI
GPUHOG HOGDescriptor

Table 22: DBHandler
Method/Object Method/Object Parameters
DBLoc String
User String
Pass String
DBHandler() Void
Insert() String
Select() String
Update() String

14



Table 23: FileManager
Method/Object Method/Object Parameters
Name String
Path String
FileManager Void
SaveImage() Mat
SaveVideo() Vector

Table 24: HOGParams
Method/Object Method/Object Parameters
Scale Double
GroupThreshold Double
HitThreshold Double
Levels int
GetScale() Void
GetHitThreshold() Void
GetGroupThreshold() Void
Set() Void
Params HOGParams

Table 25: ROI
Method/Object Method/Object Parameters
X Int
Y Int
Width Int
Height Int
GetX() Void
GetY() Void
SetWidth() Int Width
SetHeight() Int Height
SetXY() Int X, IntY

15



Table 26: Anomaly
Method/Object Method/Object Parameters
ID Int
Description String
rect ROI
date Date
path String
TimeStamp Long
Anomaly() Void
Anomaly Int X
GetID() Void
SetID () Int
GetRect() Void
SetRect() ROI
GetDate() Void
SetDate() Date

5 Component Design

5.1 Segmentation[1,3]

Background subtraction algorithm is consisting of 4 major steps[1]

1. Pre processing

2. background modeling

3. Foreground Detection

4. Data validation

Pre-processing : the process of changing the raw data which is the input video
sequences into a format that can be read for the next phase[1].

Background Modeling : Background subtraction is the method used in
computational to separate foreground objects from the background in the
sequence of video frames[1].

Foreground Detection : moving object that separated from the background
model or scene after the step of background separation. The method will
detect moving object and classify the process of pixels as foreground and
background[1].

Data Validation : Data validation stages function as examiner and eliminator
where it examines candidate mask and eliminates pixels that are not related
with target moving objects and only provide the foreground masks output[1].

16



Figure 3: Background subtraction steps illustration

5.1.1 Mixture of Gaussian(MoG)

[1,3] Why MoG ? MoG method is chosen due to its low rate of complexity,
memory consumption and suitability for outdoor environment along with its
robustness and also it can handle multi-modal distributions

In MoG, the background is known as parametric frame of values where each
pixel location is represented with number of Gaussian functions as probability
distribution function as given[1].

Furthermore, the advantage of MoG is that it can extend to colour video
sequences that can solve the shadows effect

5.2 Tracking[4,5,6,7]

Mean shift, which was proposed in 1975 by Fukunaga and Hostetler, is a
nonparametric, iterative procedure that shifts each data to local maximum of
density function[5].

Consider having the histogram of a set of pixels, we want to draw a rectangle
over the area of maximum density of this set. The centroid of pixels inside the
rectangle won’t match the centroid of the pixel density so, we continuously
move our rectangle such that the centroid of the rectangle and the centroid of
the pixel density match. Figure 4 is a representation on what happens with
the meanshift algorithm

17



Figure 4: Meanshift

How to Calculate the Mean Shift Algorithm[4]

1. Choose a search window size.

2. Choose the initial location of the search window.

3. Compute the mean location in the search window.

4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until convergence.

The method has been applied to the task of tracking a football player marked
by a hand-drawn ellipsoidal region[5].

5.2.1 Camshift[4]

Since the probability distribution of the object can change and move
dynamically in time, the mean shift algorithm is modified to deal with
dynamically changing probability distributions. The modified algorithm is
called the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm.

CAMSHIFT tracks dynamically changing probability distributions. Many
approaches for using histograms to identify visual objects have been
suggested[4].

How to Calculate the Continuously Adaptive Mean Shift Algorithm[4]

1. Choose the initial location of the search window.

2. Mean Shift as above (one or many iterations); store the zeroth moment.

3. Set the search window size equal to a function of the zeroth moment
found in Step 2.

18



Figure 5: Meanshift example

4. Repeat Steps 2 and 3 until convergence (mean location moves less than a
preset threshold).

The method has been applied to a traffic car comparing it with the meanshift
algorithm the marker is applied statically[7]

19



Figure 6: Camshift results Figure 7: Meanshift results

20



5.2.2 Feature Extraction[2]

What the HOG does in summary is extracting features based on the histogram
of gradients.

1. first the horizontal and vertical gradients are calculated using the following
kernels:

2. then we find the magnitude and direction of the gradients by converting
from Cartesian coordinates to polar coordinates to obtain a magnitude
and a direction at every pixel.

3. Then these are the resultant gradients: Left : Absolute value of x-gradient.
Center : Absolute value of y-gradient. Right : Magnitude of gradient.

21



4. the magnitude of gradient at a pixel is the maximum of the magnitude of
gradients of the three channels(RGB), and the angle is the angle corre-
sponding to the maximum gradient. Empirically having the angle between
0 to 180 degrees gives much better results.

5. Then we calculate the histogram of the gradients by first dividing the
image in 8*8 cells to make the representation less noisy.

6. The histograms must be normalized to be independent of the lighting
conditions, to obtain better results we must work on a 16*16 block.

7. And in the end normalized histogram features are used for detection.

22



Figure 8: Hyper planes and vectors

23



5.2.3 Detection and Classification[9]

The classification and detection were done using SVM (Support vector Ma-
chines). The Support vector machines is a machine learning algorithm that is
mainly used for classification. Our approach in using SVM is One Against All
(OAA)[9], basically we classify each action independently; then we run our clas-
sification on all actions afterwards. If we’re trying The support vector machine
is responsible for taking a set of data and creating hyperplanes between these
data vectors that become the margin between the classification of this data and
the others, as shown in the figures below.

1. First we have to identify the best hyperplane *separator* between two
classes. Ideally the best hyperplane is the one that segregates the two
classes better and maximizes the distance between nearest data points.

Figure 9: SVM Margin

2. If there exists outliers, SVM has a feature to ignore them.

Figure 10: SVM outlier

24



6 Human Interface Design

6.1 Screen Images

Figure 11: Select Camera screen

25



Figure 12: Output Screen

26



Figure 13: Main Screen

27



6.2 Screen Objects and Actions

A discussion of screen objects and actions associated with those objects.

6.2.1 Select Camera

The user will be able to select which camera to view on VIGIL, whether the
camera is connected to the computer or is an IP camera.

6.2.2 Output screen

In this screen, the feed of the camera is shown, also the user can add a new
ROI, or reset detection parameters.

6.2.3 Main Screen

In this screen, the user monitors cameras and views recorded anomalies.

7 Test results

The primitive data-set we created consists of 6710 frames extracted from 2
recording sequences of 6 people doing the same actions twice on 2 different cars.

Below is our Primitive testing results:

Table 27: My caption
Test Accuracy Number of frame samples
Jumping into Car 95.2% 2093
Object Swinging 51.3% 1127
Punching 65.4% 772
Pushing 100% 1004

28



8 Requirements Matrix

8.1 SRS Requirements

Req1: Add Camera
Req2: Set ROI
Req3: Detect Loitering
Req4: Detect Hand Swing
Req5: Detect Jumps
Req6: Save Videos of Anomalies
Req7: Feedback Alert
Req8: Remove/Modify ROI
Req9: Alter Parameters
Req10: Reset Parameters
Req11: View Detected Anomalies

8.2 Test Cases

TC1: Adding a camera to the main feed.
TC2: Running Detection and Classification on all Cameras/Videos.
TC3: Changing HoG Parameters on one of the cameras.
TC4: Adding/Changing ROI on one of the cameras.
TC5: Viewing saved anomalies on system.

Table 28: Requirements Traceability Matrix
Total Req1 Req2 Req3 Req4 Req5 Req6 Req7 Req8 Req9 Req10 Req11

TC1 1 X
TC2 7 X X X X X X X
TC3 3 X X X
TC4 3 X X X
TC5 1 X

29



9 References

1. S. S. Mohamed, N. M. Tahir, and R. Adnan, Background modelling and
background subtraction performance for object detection, 2010 6th Inter-
national Colloquium on Signal Processing its Applications, 2010.

2. N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human
Detection, 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05)

3. T. Bouwmans, F. E. Baf, and B. Vachon, Background Modeling using
Mixture of Gaussians for Foreground Detection - A Survey, Recent Patents
on Computer Science, vol. 1, no. 3, pp. 219237, Sep. 2010.

4. G. R. Bradski, Computer Vision Face Tracking For Use in a Perceptual
User Interface, 1998.

5. D. Comaniciu, V. Ramesh, and P. Meer, Real-time tracking of non-rigid
objects using mean shift, Proceedings IEEE Conference on Computer Vi-
sion and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

6. Z.-Q. Wen and Z.-X. Cai, Mean Shift Algorithm and its Application in
Tracking of Objects, 2006 International Conference on Machine Learning
and Cybernetics, 2006.

7. Meanshift and Camshift, OpenCV: Meanshift and Camshift. [Online].
Available: http://docs.opencv.org/trunk/db/df8/tutorialpymeanshift.html.[Accessed :
25 −Apr − 2017].

8. M. Komorkiewicz, M. Kluczewski, and M. Gorgon, Floating point HOG
implementation for real-time multiple object detection, 22nd International
Conference on Field Programmable Logic and Applications (FPL), 2012.

9. J. Manikandan and B. Venkataramani, Design of a modified one-against-
all SVM classifier, 2009 IEEE International Conference on Systems, Man
and Cybernetics, 2009.

30


