
Capacity Monitoring Tool

Ala’a Mostafa, Dalia Ashry, Merna Osama, Nora Eleish
Supervised by

Dr. Abdul Rahman Galal Eng. Radwa Samy

April 2, 2017

1 Introduction

1.1 Purpose of this Document

The purpose of this document is to present a detailed description of capacity
monitoring tool. Including the purpose, features, the interfaces of the system,
what the system will do, the constraints under which it must operate and how
the system will react to external stimuli. This document is intended for both
the stakeholders and the developers.

1.2 Scope of this Document

Capacity monitoring tool aims to detect critical network loads through a
web-based graphical user interface tool and a mobile application. The web-
based keeps monitoring the network resources as the capacity of the nodes.
Moreover, receiving alarms through a mobile application when there is a critical
capacity issue that is about to occur. The tool aims to serve Vodafone’s capacity
team in monitoring the capacity of the network nodes in order to prevent and
fix this critical capacity issues that might come up. In addition, providing
dashboards that contain a summary of the data collected by the nodes through
data visualization as in graphs, charts, and gauges.

1.3 Overview

The proposed tool consists of two parts: a website and a mobile ap-
plication.The website collects regularly different files with different formats as
(JSON, XML, Excel,...etc.) from the following network nodes: Receiver Buffer
Descriptor (RBD), Missed Call Keeper (MCK), Switch Divert(SD), and Session
Description Protocol (SDP). . . etc. As the website parses these collected files
and inserts the needed data into Firebase database. Once parsing files is done,
there are some operations that can be performed on the data extracted from

1

Figure 1: Vodafone Call Flow

these files such as the following: clustering, classification, and data analysis that
include the following operations: average, sum, maximum and minimum to pro-
duce reports. Moreover to monitor the capacity of nodes, displayed dashboards
of the capacity of nodes,are viewed for the capacity monitoring team. The mo-
bile application will be developed for receiving alarms in case of the capacity
of a certain node is about to reach its maximum capacity either via sending an
SMS or an e-mail. In addition, the mobile application will have a dashboard
displaying a summary for the capacities of the nodes. Figures and analysis of
data will be shown in the dashboard. The files contain rows of data. The first
row contains columns’ names, the rest are the data that corresponds to each
column.

The Call is Represented by:
Node A is the mobile device that wants to call node B which is another

device but before reaching to node B, here are other nodes must be reached
first, as first if it is 2G it must stop by Base Station Controller(BSC) node first,
but if it is 3G it must stop by Radio Network Controller(RNC) node first ,but
for 4G it doesn’t have a specified node to stop by at the beginning it just goes
through the Mobile Switching Center(MSC) node like the others also. Then
through the Mobile Switching Center (MSC) node it search for the location of
node B as Mobile Switching Center (MSC) is the core switching node it connects
with the CSDB node which is the database that contains the location of every
node and it found node B at Mobile Switching Center 2(MSC2) then it goes to
Base Station Controller (BSC) node then node B which the phone rings.

The Mobile Switching Center (MSC) node contains the Intelligent Network
(IN) which consists of the IT (Information Technology) department which is
the core of development. In the Intelligent Network (IN) there is the Session

2

Figure 2: SDP Diagram

Description Protocol (SDP) node which is the most secured node in Egypt as
it contains all the data of the Vodafone customers.

In the Intelligent Network (IN), before the phone call reaches device B we
must check if device A has enough balance/credit or not to make the call. VCCN
is the charging node sent a request to Session Description Protocol (SDP) to
complete the process if this user has credit to complete the call or not in each
minute the VCCN sends a request to know the credit the user if the user has a
credit the call will be continued, if not the call will end. All the reporting and
log files will be exported from the Session Description Protocol / Service Data
Point /Signal Distribution Panel (SDP).

The capacity monitoring tool system consists of three types of configurations
which are data collection, system and job illustrate. The system, it consists of
data like what are Internet Protocols (IPs) that will be reached to, what is the
path, what is the username, what is the password and what is the file that will
be reached through certain path These are the data which are important to be
configured in the system, the system is not interested with what is inside the file.
Data collection, it is where the file is defined its type, if it is XML/text or other
types, moreover, the type of connection is defined if it is FSTP or connecting
on a database or other types. The job, it is when we are going to reach to that
certain file, as it will be reached daily or hourly, also the job defines if there is
a trial mechanism or no.

1.4 Business Context

The tool monitors the issue of the massive number of reports which are
generated regularly. The purpose of generating reports is to make valuable
offers that can benefit the business and help in guarantying a stable network
performance by monitoring its resources.

3

2 General Description

2.1 Product Functions

The Capacity monitoring tool’s functionalities will be collecting files from
network nodes, parsing these files that vary in formats, clustering, classification,
sending alarms/notifications, reviewing summaries and data analysis, which will
be described in more details later in this document.

2.2 Similar System Information

There are similar systems for viewing the dashboards as Nokia and NSN
company. A comparison is carried on between these systems and the proposed
system in the following table:

4

System Functionalities

Nokia a) Problem: With mountains of data being gen-
erated every day, you need a solution to mon-
itor your networks reliably, accurately and cost-
efficiently. b)Tool: The new Capacity Advisor fea-
ture helps you predict the network capacity needs,
and it recommends what actions to take and when.
Thanks to this you can ensure that there is enough
capacity in the network when you roll out your new
service. c) They used the dashboards in KPI predic-
tion and time slot classification.

For showing as many dimensions as possible and
showing relations between data. They used them in
Predictive operations as the following:

- Service Key Performance Indicator (KPI)
monitor system health.

- SLA agreement guarantees 99.x per-
cent availability and steady values for normal
operation.(1)

NSN a) Monitor network alarm and create a Trouble
Ticket if needed after initial checks are done. b) Log
the exact time of the alarm, as it appeared in OSS. c)
Sent SMS to management team if the case is consid-
ered as critical d) Notify the customer through emails
for outage issues as per management directions. e)
They used the dashboards in the User Mobility.

-For showing Usage of traffic planning, ads plan-
ning and traffic jam prediction.

-They also used them in cell classification and
predicts preferred user movement.(2)

The Proposed Tool a) It will collect the files with different formats from
the network nodes.
b) Then, parsing them and save them in the
database.
c) There are some operations that can be made on
the parsed files as the following:

- classification, clustering, and data analysis.
- A website for displaying the dashboards, the

results of the operations that is done before, and the
whole capacity monitoring process.

- A mobile application will be available with a
custom dashboard for viewing the data summary and
receiving alarms.

5

2.3 User Characteristics

The characteristics of the user are a good experience with the com-
puter applications, have a perfect background about the network components.
Also, the user must have a good experience with data analysis as clustering
and classification. So the capacity team and administrator are responsible for
monitoring network resources through the web-based graphical user interface
through visualizing the dashboards and perform operations.

2.4 User Problem Statement

Vodafone has a crucial problem of monitoring the massive capacity of
their network nodes in real time. The late response for such an issue might
result in complete or partial shutdown of a major server or an active node.

2.5 User Objectives

The capacity team needs a tool that is able to collect different files with
different formats from different nodes on regular basis (daily, hourly. . . etc.).
This tool will parse the received files from the node and insert the needed data
into the database. Also, a notification system is needed in case the capacity of a
certain node is not enough either via sending an SMS or an e-mail and Figures
and analysis of data will be shown on the dashboard website. There are some
analysis operations that can be made on these files as the following average,
sum, maximum and minimum to produce configured data.

2.6 General Constraints

The general constraint is connecting to Vodafone access server.

3 Functional Requirements

Name Define algorithm attributes
Type Function requirements
Criticality High
Input //
Output Selected algorithm and its attributes
Description define the algorithm used and its attributes.
Priority High
Expected risks
Preconditions calling selected data from database
Post-conditions applying the algorithm on the selected data.

6

Name Define algorithm parameters
Type Function requirements
Criticality High
Input //
Output defined parameters
Description define the parameters of the used algorithm, this is

customized per user.
Priority High
Expected risks
Preconditions calling selected data from database
Post-conditions applying the algorithm on the selected data.

Name classify
Type Function requirements
Criticality High
Input selected Algorithm and selected dataset
Output classified data
Description classification for the collected data.
Priority High
Expected risks data error, logical error.
Preconditions calling data from database
Post-conditions store the classified data into database.

Name analyze data
Type Function requirements
Criticality High
Input selected Algorithm and selected data
Output analyzed data
Description data analysis for the selected data.
Priority High
Expected risks data error, missing design, logical error.
Preconditions calling data from database
Post-conditions store the classified data into database.

Name clustering
Type Function requirements
Criticality High
Input selected Algorithm and selected data
Output clustered data
Description dividing the selected data for groups using clusters.
Priority High
Expected risks gathering the data around one cluster and the rest

nothing.
Preconditions calling data from database
Post-conditions store the clusters data into database.

7

Name getDataSet
Type Function requirements
Criticality Medium
Input Parameters for specific data set
Output The Required data set
Description Getting data set from the database to make the re-

quired operation.
Priority High
Expected risks dropping the connection between the database.
Preconditions calling database
Post-conditions sending data set to the capacity management team

or admin

Name declare certain capacity
Type Function requirements
Criticality high
Input The required node
Output The required capacity for the node.
Description Declaring the capacity of each node by each admin.
Priority High
Expected risks
Preconditions define the value of capacity
Post-conditions set the value of the capacity

Name receive file
Type Function requirements
Criticality Medium
Input The data set and the path of the required file.
Output The required file.
Description This is for getting the file from the database.
Priority Medium
Expected risks Error while receiving the file or receiving the wrong

file.
Preconditions collect the file
Post-conditions store it into the database

8

Name Display dashboards
Type Function requirements
Criticality High
Input The parameters for the details of the specific dash-

board.
Output Displaying the dashboard.
Description Display the dashboard for making the visualization

of the data clearly.
Priority High
Expected risks
Preconditions collecting the required details
Post-conditions sending the dashboards to the capacity management

team or admin

Name Receive alarm
Type Function requirements
Criticality High
Input //
Output Generating alarm
Description when the node reach its defined capacity so it sends

an alarm.
Priority High
Expected risks
Preconditions knowing the value of the capacity of the node.
Post-conditions receiving the alarm to one of the capacity manage-

ment team.

Name Display alarm
Type Function requirements
Criticality High
Input //
Output display alarm
Description showing the display of the alarm.
Priority High
Expected risks
Preconditions checking on the current capacity of the node.
Post-conditions sending alarm for the capacity team.

9

Name Update user data
Type Function requirements
Criticality High
Input The old data
Output The updated data
Description when the admin wants to update the data.
Priority High
Expected risks
Preconditions getting the required data to be updated.
Post-conditions replacing the old data by the updates data.

Name Display report
Type Function requirements
Criticality high
Input the required details
Output Displaying the report
Description for generating the reports and visulize it.
Priority High
Expected risks
Preconditions gathering all the details from the database.
Post-conditions displaying the report for the capacity management

team or admin.

Name Search data
Type Function requirements
Criticality Medium
Input Data set
Output required data
Description searching for the required data in the database.
Priority High
Expected risks unlinked database or syntax error
Preconditions setting the database
Post-conditions display the searched data for the asked user.

Name display charts
Type Function requirements
Criticality High
Input required details for the display charts
Output displaying charts
Description displaying the data with charts
Priority High
Expected risks
Preconditions collecting the required data for displaying the charts.
Post-conditions displaying the charts for the capacity management

team and admin.

10

Name Sign up
Type Function requirements
Criticality Medium
Input user data details
Output storing the data in the database
Description registering the new user
Priority High
Expected risks
Preconditions calling database
Post-conditions storing the user data into the database.

Name Log in
Type Function requirements
Criticality Medium
Input user details (Email and password)
Output display the interface for the user.
Description it is a combination of information that authenticates

your identity
Priority High
Expected risks
Preconditions calling database
Post-conditions log in the user

Name Select data
Type Function requirements
Criticality medium
Input selected data
Output display selected data
Description selecting certain data from the database.
Priority High
Expected risks
Preconditions calling database
Post-conditions display the selected data for capacity management

team and admin.

11

Name Choose operation
Type Function requirements
Criticality High
Input operation type and data
Output result for the operation
Description this is for choosing the operation to be done on the

selected data.
Priority High
Expected risks
Preconditions calling the database
Post-conditions the result of the operation done on the selected data.

Name add user
Type Function requirements
Criticality high
Input user details
Output store user details
Description letting the admin to add a user.
Priority High
Expected risks
Preconditions calling the database
Post-conditions giving permission to add a user

Name Delete user
Type Function requirements
Criticality medium
Input selected user
Output display selected user
Description Deleting the selected user from the database.
Priority High
Expected risks
Preconditions calling database
Post-conditions Deleting the user from the database.

Name get node current capacity
Type Function requirements
Criticality high
Input node details
Output node capacity
Description getting the node capacity for checking the capacity.
Priority High
Expected risks
Preconditions calling the node details from database
Post-conditions sending the node capacity to the capacity manage-

ment team or admin.

12

Name send alarm
Type Function requirements
Criticality high
Input //
Output sending alarm
Description sending alarms to the admin or the capacity man-

agement team.
Priority High
Expected risks
Preconditions check if the capacity of the node is above the target.
Post-conditions sending the alarm to the admin or the capacity man-

agement team.

Name Store data of user
Type Function requirements
Criticality medium
Input user details
Output //
Description storing the user details in the database.
Priority High
Expected risks
Preconditions calling database
Post-conditions storing the user details in the database.

Name generate report
Type Function requirements
Criticality high
Input required data for makong report
Output report
Description gathering the data for making a report on the nodes.
Priority High
Expected risks
Preconditions calling database
Post-conditions display the report for capacity management team

and admin.

13

Name store parsed data
Type Function requirements
Criticality high
Input data sets
Output stored parsed data
Description parsing the collected files from the node.
Priority High
Expected risks
Preconditions collecting files and calling database
Post-conditions storing the parsed files into the database.

Name Select data
Type Function requirements
Criticality medium
Input selected data
Output display selected data
Description selecting certain data from the database.
Priority High
Expected risks
Preconditions calling database
Post-conditions display the selected data for capacity management

team and admin.

Name parse TXT
Type Function requirements
Criticality high
Input collected text files
Output parsed file
Description parsing the collected text files from the nodes.
Priority High
Expected risks collect a different format
Preconditions collecting files
Post-conditions store the parsed files into the database.

Name parse CSV
Type Function requirements
Criticality high
Input collected CSV files
Output parsed file
Description parsing the collected CSV files from the nodes.
Priority High
Expected risks collect a different format
Preconditions collecting files
Post-conditions store the parsed files into the database.

14

Name parse XML
Type Function requirements
Criticality high
Input collected XML files
Output parsed file
Description parsing the collected XML files from the nodes.
Priority High
Expected risks collect a different format
Preconditions collecting files
Post-conditions store the parsed files into the database.

Name parse STAT
Type Function requirements
Criticality high
Input collected STAT files
Output parsed file
Description parsing the collected STAT files from the nodes.
Priority High
Expected risks collect a different format
Preconditions collecting files
Post-conditions store the parsed files into the database.

Name parse LOG
Type Function requirements
Criticality high
Input collected LOG files
Output parsed file
Description parsing the collected LOG files from the nodes.
Priority High
Expected risks collect a different format
Preconditions collecting files
Post-conditions store the parsed files into the database.

4 Interface Requirements

This section describes how Vodafone worker will interact with the system.

4.1 Web Based Graphical User Interface

The system website works on showing data in charts, display/make op-
erations like ”cluster”, ”classify”, ”parse”, ”data analysis” on the data. The
mobile application works on showing data and its summary, notify with the
updated report.

15

Figure 3: Sign-In Page

Figure 4: Sign-Up Page

16

Figure 5: Upload files with different formats and choose an operation such as
parsing, classifying, clustering, or data analysing

Figure 6: Overview for data in dashboards (charts)

17

Figure 7: Sign-in and sign-up pages for mobile application

18

Figure 8: Reports sent daily, hourly.. from the system and displaying data in
charts with summary

19

Figure 9: Database

5 Other non-functional attributes

5.1 Security

All files will be access-able only by Vodafone server.

5.2 Portability

A mobile application will be made for receiving alarms in case of the
capacity of a certain node is not enough either via sending an SMS or an e-
mail. Also, the mobile application will display charts data, and a website for
displaying the dashboards of the nodes viewed for the capacity team on the
parsed files.

6 Database

We designed these tables to be compatible with the data set and requirements
of Vodafone company.

20

6.1 File, File Option , File Value and Option

In these four tables, we used the entity attribute value design to be
compatible with Vodafone data sets samples. We used the entity attribute
value because the structure of the data sets is ambiguous and unclear and to
avoid the null values.

6.2 User, User Type , User URL and URL

These tables designed for storing user information (administrator and
capacity management team) as username, password and email. In the table
User Type , the user are defined by their type. According to this type, the user
can be directed to specific web pages.

6.3 Node

This designed table is for storing the nodes’ name and its capacity.

6.4 Report

The objective of this table is for generating reports for the end user. The
report specifies the nodes’ details, users’ details, files’ details , current time and
date.

6.5 Notification and Notification Type

These tables are designed for notify the users with a SMS or an E-mail
notification.

7 Preliminary Object-Oriented Domain Analy-
sis

This section presents a list of the fundamental objects that must be
modeled within the system to satisfy its requirements. A primitive class diagram
is as follows:

7.1 Classes Descriptions

7.1.1 connectionDB

This class is a concrete class.

7.1.2 List of Superclasses:

No super classes for this class.

21

Figure 10: Primitive Class Diagram

7.1.3 List of Subclasses:

No sub-classes for this class.

7.1.4 Purpose:

The basic purpose of this class is to establish connection to Fire-
base database. It follows the Singleton design pattern since the connection to
the database is only required once.

7.1.5 Collaborations:

No collaborations are needed.

7.1.6 Attributes:

connection: is an instance of the connectionDB class.

7.1.7 Operations

: getInstance(): is a static method that returns one and only one
object of this class.

connect(): has no return value. Its purpose is to connect to
the database.

showConnectionState(): has no return type. Its purpose is to
show the connection to the database state.

7.1.8 Constraints:

Only one object of this class can be instantiated and gotten
through the static function getInstance().

22

7.1.9 FileCollectorModel

This class is a concrete class.

7.1.10 List of Superclasses:

No super classes for this class.

7.1.11 List of Subclasses:

No sub-classes for this class.

7.1.12 Purpose:

The basic purpose of this class is to collect files that vary in formats from
the network nodes.

7.1.13 Collaborations:

This class must interact with FileController class in-order to achieve
the required functionalities of this class. It also has to implement FileParser in-
terface for the parsing files process.

7.1.14 Attributes:

filesCollected: is of type ArrayList¡File¿ that stores the collected
files from the network nodes.

7.1.15 Operations

: getFilesCollected(): is a method that returns an array list of type
File.

setFilesCollected(filesCollected: ArayList¡File): assigns the files
that are collected from the network nodes to filesCollected variable.

7.1.16 Constraints:

No constraints.

7.1.17 FileController

This class is a concrete class.

7.1.18 List of Superclasses:

No super classes for this class.

23

7.1.19 List of Subclasses:

No sub-classes for this class.

7.1.20 Purpose:

The basic purpose of this class is to link between FileCollector-
Model class, and Viewer class.

7.1.21 Collaborations:

This class must interact with FileController class, and and Viewer
class in-order to achieve the required functionalities of the linked classes men-
tioned earlier.

7.1.22 Attributes:

fileName, fileExtention, filePath: are of type String.
fileID: is of type integer
viewer: is an object of type Viewer class.
filesCollectedModel: is an object of type FilesCollectedModel

class.

7.1.23 Operations

: getFileID(): returns an integer value that corresponds to the ID
of the file.

getFileName(): returns a String value that corresponds to the
name of the file.

getFileExtension(): returns a String value that corresponds to
the extension/ format of the file.

getFilePath(): returns a String value that corresponds to the
path of the file.

setFileID(fileID: int): assigns an integer value for the fileID
variable.

setFileName(fileName: String): assigns a String value for the
fileName variable.

setFilePath(filePath: String): assigns a String value for the
filePath variable.

setFileExtension(fileExtension: String): assigns a String value
for the fileExtension variable.

7.1.24 Constraints:

No constraints.

24

7.1.25 FileParser

This is an interface.

7.1.26 List of Superclasses:

No super classes for this class.

7.1.27 List of Subclasses:

No sub-classes for this class.

7.1.28 Purpose:

The basic purpose of this interface is to provide common func-
tionalities but allows different implementations for the parsing files process.

7.1.29 Collaborations:

FileCollectorModel class has to implement this interface in-order
to perform the parsing files process.

7.1.30 Attributes:

No attributes.

7.1.31 Operations

: parseXML(file :fileCollector): has no return value. Its purpose is
to parse files with extensible markuo language(xml) format. Its implementation
will be in the FileCollectorModel class that implements this interface.

parseCSV(file :fileCollector): has no return value. Its purpose
is to parse files with comma seperated value(csv) format. Its implementation
will be in the FileCollectorModel class that implements this interface.

parseTXT(file :fileCollector) : has no return value. Its purpose
is to parse files with text format. Its implementation will be in the FileCollec-
torModel class that implements this interface.

parseLOG(file :fileCollector) : has no return value. Its purpose
is to parse files with log format. Its implementation will be in the FileCollec-
torModel class that implements this interface.

parseSTAT(file :fileCollector): has no return value. Its purpose
is to parse files with stat format. Its implementation will be in the FileCollec-
torModel class that implements this interface.

7.1.32 Constraints:

Only one object of this class can be instantiated and gotten
through the static function getInstance().

25

7.1.33 Viewer

This class is a concrete class.

7.1.34 List of Superclasses:

No super classes for this class.

7.1.35 List of Subclasses:

No sub-classes for this class.

7.1.36 Purpose:

The basic purpose of this class is to display the data coming from
the FileCollectorModel class.

7.1.37 Collaborations:

This class must interact with FileController class in-order to achieve
the required functionalities.

7.1.38 Attributes:

No attributes.

7.1.39 Operations

: displayParsedFiles(): is a method that returns a String value for
the parsed files.

displayDashboards(): has no return value. Its purpose is to
display dashboards that contain a summary of the data.

displatCharts(): has no return value. Its purpose is to display
charts for the data.

displayAlarm(): has no return type. Its purpose is to display
alarms received when capacity issues are about to occur.

displayReports(): has no return value. Its purpose is to dis-
play reports generated that contain summary about the results of performing
operations on data such as classification, clustering, and data analysis.

chooseOperation(): has no return value. Its purpose is to let
the user choose the operation he/she wishes to perform on the data such as
classification, clustering, and data analysis.

7.1.40 Constraints:

No constraints.

26

7.1.41 Node

This class is a concrete class.

7.1.42 List of Superclasses:

No super classes for this class.

7.1.43 List of Subclasses:

No sub-classes for this class.

7.1.44 Purpose:

The basic purpose of this class is to contain data about each node
such as IP, name, current capacity, and maximum capacity.

7.1.45 Collaborations:

This class must interact with UserInfo class and implement ob-
servable interface.

7.1.46 Attributes:

nodeIP, and nodeName: are of type String.
nodeCurrentCapacity, and nodeMaximumCapacity: are of type

integer.

7.1.47 Operations

: getNodeIP(): returns a String value that corresponds to the node
IP.

getNodeName(): returns a String value that corresponds to the
node name.

getNodeCurrentCapacity(): returns an integer value that cor-
responds to the node current capacity.

getNodeMaximumCapacity(): returns an integer value that cor-
responds to the node maximum capacity.

setNodeIP(nodeIP:String):assigns a String value to nodeIP vari-
able.

setNodeName(nodeName:String):assigns a String value to node-
Name variable.

setNodeCurrentCapacity(nodeCurrentCapacity:String):assigns an
integer value to

nodeCurrentCapacity variable.
generateFiles():generates files for each node containing some

data.

27

sendAlarm(): returns a String value containing the alarm mes-
sage if any capacity issues are about to occur.

7.1.48 Constraints:

No constraints.

7.1.49 Admin

This class is a concrete class.

7.1.50 List of Superclasses:

It extends from super-class ”UserInfo”.

7.1.51 List of Subclasses:

No sub-classes for this class.

7.1.52 Purpose:

The basic purpose of this class is to give privileges and operations
for the admin to perform operations such as accessing database and managing
it.

7.1.53 Collaborations:

This class must extend from UserInfo class and implement observer
interface.

7.1.54 Attributes:

Attributes are the same as found in the super-class UserInfo.

7.1.55 Operations

: Methods are the same as found in super-class UserInfo but in
addition to the following methods:

deleteData(childKey: String, childName:String): is a method
with no return value. Its purpose is to give the admin privileges to delete data
from the database. In-order to perform the deletion operation, some parameters
are required: childKey is the the key in the database, and childName is the name
of the child in database. Both can be used to delete a certain data or just one
of them.

updateData(childKey:String, childName:String, newData:JSONArray):
has no return value. Its purpose is to give privileges to the admin to update
data in the database through providing certain parameters: childKey, child-
Name, and newData.

28

insertData(newData:JSONArray): has no return value. Its
purpose is to give privileges to the admin to insert data into the database
through passing the new data in JSONArray format as a parameter.

defineAlgorithmAttributes(algorithmName:String): has no re-
turn value. Its purpose is to give the admin privileges to define and set default
attribute values for a certain algorithm.

declareCertainCapacity():has no return value. Its purpose is to
give the admin privileges to declare and set the maximum capacities for the
network nodes.

searchData(data:String): returns an ArrayList of type String.
Its purpose is to search for data in the database through passing a query as a
parameter for the method.

selectData(childKey:String, childName:String): returns a String
value. Its purpose is to select some data from the database through passing the
childKey and childName as parameters to the method.

7.1.56 Constraints:

No constraints.

7.1.57 CapacityManagementTeam

This class is a concrete class.

7.1.58 List of Superclasses:

It extends from super-class ”UserInfo”.

7.1.59 List of Subclasses:

No sub-classes for this class.

7.1.60 Purpose:

The basic purpose of this class is to give privileges and operations
for the capacity management team members to perform some operations..

7.1.61 Collaborations:

This class must extend from UserInfo class and implement observer
interface.

7.1.62 Attributes:

Attributes are the same as found in the super-class UserInfo.

29

7.1.63 Operations

: Methods are the same as found in super-class UserInfo but in
addition to the following methods:

updateUserData(): has no return value. Its purpose is to give
privileges to each capacity management team member to update his/her infor-
mation.

7.1.64 Constraints:

No constraints.

7.2 Classification , Clustering and DataAnalysis

These classes are sub-classes that extend from abstract class ”Al-
gorithm”.

7.2.1 List of Superclasses:

No super classes for this class.

7.2.2 Purpose:

The basic purpose of these classes is to apply any of these algo-
rithms on the data.

7.2.3 Collaborations:

No collaborations are needed. Attributes:

7.2.4 Operations

: classify(dataset: File, algorithmUsed:String) its the function that
classify data in files.

analyzeData(): has no return value.
cluster(): has no return value, Its purpose is to cluster the data.

7.2.5 Constraints:

No constraints.

30

7.3 Algorithm

This class is an abstract class.

7.3.1 List of Superclasses:

No super classes for this class.

7.3.2 List of Subclasses:

subclasses: classification, dataAnalysis, Clustering

7.3.3 Purpose:

The basic purpose of this class is to choose an algorithm to classify,
or cluster, or analys data.

7.3.4 Collaborations:

No collaborations are needed. Attributes:

7.3.5 Operations

: setDataSet(dataset:File): has no return value, purpose to set/upload
data file.

setAlgorithmUsed(algorithmUsed:String): has no return value,
purpose to set an algorithm on data.

defineAlgorithmParameters(algorithmUsed:String, dataset:File):
is a method that define type of algorithm for the file.

getDataSet: return files that has been uploaded.
getAlgorithmUsed: return algorithms that has been choosen.

7.3.6 Constraints:

No constraints.

31

7.4 Classification , Clustering , DataAnalysis

These classes are supclasses extends from Class ”Algorithm”.

7.4.1 List of Superclasses:

No super classes for this class.

7.4.2 Purpose:

The basic purpose of these classes is to apply any of these algo-
rithms on files.

7.4.3 Collaborations:

No collaborations are needed. Attributes:

7.4.4 Ope rations

: classify(dataset: File, algorithmUsed:String): has no return value.
Its purpose is to classify data.

analyzeData(): has no return value. Its purpose is to analyze
data.

cluster(): has no return value, Its purpose is to cluster data.

7.4.5 Constraints:

32

7.5 UserInfo

This class is a super-class

7.5.1 Subclasses:

Sub-classes are : Admin and CapacityManegmentTeam

7.5.2 Purpose:

The basic purpose of this class is to provide common attributes
and methods to its sub-classes.

7.5.3 Collaborations:

This class is a super-class, both Admin, and CapacityManage-
mentTeam extend from this class. Also, there is n association relationship be-
tween this class and Node class. Attributes: name, email, and
password: are of type String representing user name, email, ad password.

id: is of type integer representing user ID.
nodes: is of type Node, representing the node that is monitored

by a certain member in the capacity management team.

7.5.4 Operations

: getID(): returns an integer value that corresponds to the ID.
getName(): returns a String value that corresponds to the

name.
getEmail(): returns a tring value that corresponds to the email.
getPassword(): returns a String value that corresponds to the

password.
setID(id:int): assigns an integer value to variable ID.

setName(name:String): assigns a String value to
variable name.

setEmail(email:String): assigns a String value to variable email.
setPassword(password:String): assigns a String value to vari-

able password.
logIn(): has no return value. Its purpose is to handle the

logging-in process.
signUp(): has no return value. Its purpose is to handle the

signing-up process.
receiveFiles(): has no return value. Its purpose is to handle the

process of receiving files.
receiveAlarm(): has no return value. Its purpose is to receive

data about the alarm sent.

33

7.5.5 Constraints:

7.6 observable

This is an interface for handling the operation of add or delete
observer and its notify.

7.6.1 Subclasses:

No subclasses.

7.6.2 Purpose:

The basic purpose of this interface is to add or delete observer
and send notification to the observers.

7.6.3 Collaborations:

This interface interacts with node class which will implements the
function inside the interface. Attributes: No attributes.

7.7 observer

This is an interface for updating the notifications.

7.7.1 Subclasses:

No subclasses.

7.7.2 Purpose:

The basic purpose of this interface is to update the notification.

7.7.3 Collaborations:

This interface interacts with capacity management team and ad-
min classes which will implements the function inside the interface. Attributes:
No attributes.

34

7.7.4 List of Superclasses:

Names all immediate superclasses.

7.7.5 List of Subclasses:

Names all immediate subclasses.

7.7.6 Purpose:

States the basic purpose of the class.

7.7.7 Collaborations:

Names each class with which this class must interact in order to
accomplish its purpose, and how.

7.7.8 Attributes:

Lists each attribute (state variable) associated with each instance
of this class, and indicates examples of possible values (or a range).

7.7.9 Operations

: Lists each operation that can be invoked upon instances of this
class. For each operation, the arguments (and their type), the return value (and
its type), and any side effects of the operation should be specified.

7.7.10 Constraints:

Lists any restrictions upon the general state or behavior of in-
stances of this class.

35

Figure 11: Vodafone UseCase

8 Operational Scenarios

1)Declare certain capacity :
The admin could declare certain capacity for each node.

2)Display alarm :
The admin could display the alarm when the capacity of a node

reaches more than the declared capacity.
3)receive files :

The admin receives all the files which are generated from all
the nodes.

4)Display dashboards :
The admin could display dashboards

5)receive alarms :
The admin will receive alarm information like the name of the

node and the capacity node that reached.
6)Update data :

The admin could update any data in the system.
7)Insert data :

The admin could insert any kind of data in the system.
8)Delete data :

The admin could delete any kind of data in the system.
9)Select data :

The admin could select any data he/she wanted from the sys-
tem.

36

Figure 12: Admin UseCase

37

Figure 13: Node UseCase

10)Search data :
The admin could search what ever he/she wanted to find from

the system.
11)Display report :

The admin could display the generated report.
12)Display charts :

The admin could display the generated charts.
13)Sign up :

The admin must sign up and enter his data like username,
email, and password.

14)Log in:
The admin must sign in using email and password to enter to

the admin pages.
15)Choose Operation :

The admin could choose the operation to implement on the
parsed data.

16)Define Algorithm Attributes:
The admin would declare the algorithm attributes and declare

default values according to the parameters of the algorithm.
1)Send alarm :

The node will send an alarm to the admin and the capacity
management team if the node reached more than the declared capacity.

2)Generate files :
Each node will generate files with different extensions.

3)Get node current capacity
The node will be declared its capacity.

1)Generate report :
The server generates all the reports.

2)Store data parsed :
The server is the place where the data which is parsed would

be stored in it.

38

Figure 14: Server UseCase

Figure 15: Capacity Monitoring UseCase

39

Figure 16: Parser UseCase

1) Sign Up :
All of the capacity management team must sign up writing their

username, email, and password.
2)Update User Data

The member of the capacity management team could update
their own information like username, email, and password.

3)Display Alarm :
The member of capacity management team could display the

received alarm.
4)Choose Operation :

The member of capacity management team could choose an
algorithm to implemented it on the parsed data.

5)Log In:
The member of capacity management team must log in with

their email and password to reach their own web pages.
6)Receive Alarm

The member of capacity management team receives alarm from
the node that its capacity reached more than declared capacity.

7) Display Reports:
The member of capacity management team could display the

reports which are generated.
8)Display Charts

The member of capacity management team could display the
charts which are generated.

1)Parse TXT
This function is parsing the generated TXT files.

2)Parse CSV
This function is parsing the generated CSV files.

40

Figure 17: Classification UseCase

3)Parse XML
This function is parsing the generated XML files.

4)Parse STAT
This function is parsing the generated STAT files.

5)Parse LOG
This function is parsing the generated LOG files.

1)Get Dataset
The classification algorithms must have a dataset to be imple-

mented.
2)Define Algorithm Parameters:

The classification algorithms must define its parameters.
3)Classify

This function is to implement the algorithms of the classifica-
tion.

1)Get Dataset
The cluster algorithms must have a dataset to be implemented.

2)Define Algorithm Parameters:
The cluster algorithms must define its parameters.

3)Clustering
This function is to implement the algorithms of the clustering.

1)Get Dataset
The data analysis algorithms must have a dataset to be imple-

mented.

41

Figure 18: Cluster UseCase

Figure 19: Data Analysis UseCase

42

Project with Gantt Chart (2).png

Figure 20: Gantt Chart For Preliminary Schedule

2)Define Algorithm Parameters:
The data analysis algorithms must define its parameters.

3)Analyze Data :
This function is to implement the algorithms of the data anal-

ysis.

9 Preliminary Schedule Adjusted

10 Preliminary Budget Adjusted

Item Item Cost
Firebase Database 10 dollars

11 Appendices

Specifies other useful information for understanding the requirements. All SRS
documents should include at least the following two appendices:

11.1 Definitions, Acronyms, Abbreviations

MS Mobile Subscriber
BTS Base Transceiver Station
BSC Base Station Controller
BSC Base Station Controller
RNC Radio Network Controller
MSS Mobile Switching Server
VLR Visitor Location Register
HLR Home Location Register
SGSN Support GPRS Service Node
GGSN Gateway GPRS Service Node.
MSC Mobile Switching Center
SDP Session Description Protocol / Service Data Point / Signal Distribution Panel.
RBT Ring Back Tone.
RBD Receiver Buffer Description.

43

11.2 Collected material

12 References

References

[1] [Online]. Available: https://networks.nokia.com/solutions/performance-
manager

[2] [Online]. Available: https://www.expatriates.com/cls/31181204.html

44

