
The Wanderer: Implementing Markerless

Augmented Reality with Object Position

Awareness

Mina Samir, Ahmed Hanie, Aly Aboulgheit, Karim Hossam
Supervised by: Dr. Ayman Ezzat and Eng. Noha Elmasry

November 28, 2017

1 Introduction

1.1 Purpose of this document

The purpose of this Software Requirements Specification document is to outline
the requirements for a markerless augmented reality game. The Wanderer is
aimed to use Object recognition to superimpose the virtual objects on real
time objects, and with the use of Geolocation in able to locate and position
the virtual object. The Wanderer is a Role Playing Game that aims for the
user to go to certain areas indoors and outdoors in order to take quests, trade
and get resources to craft items. The project will consist of an android based
mobile with a camera and connected to the internet with that the user could be
entertained with the game.

1.2 Scope of this document

The Wanderer is aimed to entertain all people that enjoy moving around and
having fun. The game is a location-based augmented reality game that everyone
should enjoy. The user will feel that they are inside the game, taking adventures
and completing tasks that will help them level up and become more adaptive
toward the gameplay.

1.3 Overview

Augmented reality games has taken over the world by a surprise starting with
Ingress to Pokemon GO. This field makes the user entertained and help devel-
opers understand ans use the markerless augmented reality algorithms. The
idea of The Wanderer is that the user go to a specified real time place to ac-
complish a certain quest, this quest could be fetching something from a place
and returning it, delivering a certain item from a place to another, or combating

1



some enemies. The quest will be located using the smartphone’s sensors fused
together. GPS to locate the quest in the map, using gyroscope to locate the
orientation on the quest, and the compass to locate the quest’s direction rela-
tive to the geographic cardinal directions , once the user enters the field, the
sensor fusion will activate to locate the quest. The quest will be superimposed
by using the markerless augmented reality’s algorithm object recognition and
with the help of the smartphone’s sensor fusion, the item will be augmented
on real time objects. Same strategy will be allied on the enemy, or items.

Figure 1: Block Diagram

1. User System:

(a) Markerless Augmented Reality System: This system manages the
superimposed objects in the game. Allows the user to interact with
them

(b) Combat System: This system aims to attack an NPC, defend foreign
attacks, equip items and unequip items during combat.

(c) Crafting System: This system allows the user to craft items in game
like weapons, armors and consumables using harvested resources.

(d) Harvesting System: This system allows the user to harvest resources
from a predefined places to use them for crafting or trading.

(e) Mapping System: This system is a map that has all the predefined
places for the user to interact with them like shops, quests and re-
sources.

2. Admin System:

(a) Registration System: This system manages the information of the
users and admins like the log in or sign up.

2



(b) Sensor Fusion System: This system takes the sensor readings from
the mobile device (Gyroscope, Magnetometer, GPS and Accelerom-
eter) sends them to the database for storage, and helps in adding or
locating superimposed objects.

(c) Markerless Augmented Reality System: This system helps the Admin
to add augmented objects in the predefined places.

3. Object Detection And Handler System:

(a) Object Recognition System: This system recognize real time objects
in order to add the virtual object on them.

(b) Image Manipulation System: This system is aimed to manipulate the
taken image from the background of the virtual object, like cropping
or resizing.

(c) Database Management System: This system is aimed to send the
results to the database for storage, also it the database gets a new
frame, this system sends it to the server to be processed.

1.4 Business Context

Nowadays, Augmented reality has been an uprising topic that makes people
move from one place to another in order to achieve a certain mission. It helps
the user to grasped the link between reality and virtual reality. An augmened
reality game is a way that people enjoys virual objects imposed on real life,
especially after pokemon GO has made over 100 million downloads, the call for
an augmented reality game has been called upon. The Wanderer will contain
quests that the user will complete, these quests will have certain missions that
the user will travel to the place mentioned to complete it. Crafting will be
available and will allow the user to create items like swords, shields or amulets
that will help the user to fight his enemies. To craft the user will go to a place
that has resources, after collecting it the user will open the crafting menu, if
the user has the necessary resources, then the user may craft it. The combat
mechanize will be turn-based where the user will be given choices on how to
inflect damage on the enemy , and the user may use the items which has been
crafted to fight it. The enemy will then attack the user, which ever reaches the
health to zero will win. The user will level up whichever the quest is completed,
craft an item, defeated an enemy or collect a resource. Leveling up would help
the user learn some skills which will help in combat or crafting or purchasing
from a shop. The shops will be in a defined place where the user will purchase
items or weapons to ease combat or collecting resources. Collecting resources,
where there will be defined places that the user will go to to collect them, the
user will go and click on the mine or others to collect. The transactions will be
made by a virtual currency (Coins) that the user gains upon completing a quest
or defeating an enemy.

3



2 General Description

2.1 Product Functions

1. Object detection accuracy

2. Object detection speed

3. Differentiating between multiple instances of the same object

4. Markerless augmented reality

5. Real-time computation of object detection on mobile’s camera

6. Real-time update of augmented information as multiple users use the sys-
tem at the same time

7. Performing object detection on a server

8. Solving Interior Location tracking

9. Using Sensors to help detecting real time objects, and superimposing the
virtual objects

10. The user may trade with NPC.

11. The user can battle an NPC.

12. The user can gather resources from real time places.

13. The user will use these resources to craft items, to aid them in battles.

14. The user will takes quests from NPC, certin mission on which the user
must complete.

2.2 Similar System Information

In the last year, Pokemon GO [1][2] has been a huge influence on a lot of
people, it made people go and try to catch them all, and re-live every per-
son’s childhood. Pokemon GO is a free-to-play, location-based augmented re-
ality game developed by Niantic for iOS and Android devices. Players create
and customize their own avatars[3]. Once created, an avatar is displayed on
a map based on the player’s geographical location. Features on the map in-
clude ’PokStops’ and ’Pokmon gyms’. PokStops provide players with items,
such as eggs, Pok Balls, berries, and potions. These PokStops can be equipped
with items called ’lure modules’, which attract additional wild, and occasion-
ally rare, Pokmon. Gyms serve as battle locations for team-based king of the
hill matches. PokStops and gyms are typically located at places of interest
[4]. As players move within their real world surroundings, their avatars move
within the game’s map. Different Pokmon species reside in different areas of
the world; for example, water-type Pokmon are generally found near water[5].

4



When a player encounters a Pokmon, it may be viewed either in augmented
reality (AR) mode or with a live rendered, generic background. AR mode uses
the camera and gyroscope on the player’s mobile device to display an image of
a Pokmon as though it were in the real world. The Wanderer and Pokemon
GO have some common grounds. The geolocation system is implemented on
both applications to help identify the location of the augmented object. Both
of the applications are markerless augmented reality game. The difference is
that The Wanderer uses object detection to superimpose the augmented object
on a real time object, where Pokemon GO uses only geolocation to superim-
pose the augmented object. In the system Second Surface [6], the system was
able to add an augmented object superimposed on a real time objects mark-
erlessly. The researches used Vuforia [6] and dictionaries to store classifiers to
be able to pin the posts without markers. Our project will use the marker-
less part in this paper which will help us to place an object without marker.

2.3 User Characteristics

1. User must have basic android knowledge.

2. User is comfortable in going outside and play the game.

3. The user must know how to use the phone camera.

2.4 User Problem Statement

Our project mainly focus on creating A Markerless Real-time Augmented Real-
ity Application that enhance awareness of Object positioning indoor/outdoor.

2.5 User Objectives

Game’s items will be superimposed by using the object recognition algorithm
and with the help of the smartphone’s sensor fusion, the item will be augmented
on real time objects. Object detection algorithm speed will have to increase in
order to superimpose the augmented items quickly so the user will interact with
it.

2.6 General Constraints

1. User must have an android device with a camera at least 1280x960 Capture
Resolution.

2. User must be connected to the internet.

5



3. Android device must have atleast GPS, Gyroscope, Magnetometer and
accelerometer sensors.

4. User must enable the sensors such as Global Positioning System or/and
Gyroscope.

5. The android software must be at least 4.1 version (Jelly beans).

3 Functional Requirements

3.1 Server

1. ID: SR1

• Title: ReadImage

• DESC: The Server would read an image from the local file system
through its path.

• Input: file path string.

• Action: Reading an image from the local file system.

• Output: Image.

• Pre-condition: The image must exist on the file system.

• Post-condition: None.

• DEP: SR7, SR10, SR9, MB3, MB6, MB7, MB1.

2. ID: SR2

• Title: WriteImage

• DESC: The Server would write an image to the local file system from
a given path.

• Input: file path string.

• Action: Writing an image to the local file system.

• Output: Image.

• Pre-condition: Image variable in memory must not be empty.

• Post-condition: None.

• DEP: SR7, SR1, SR10, SR9, MB3, MB6, MB7, MB1.

3. ID: SR3

• Title: CropImage

• DESC: The Server would crop the image returning the area between
the top left pixel and bottom right pixel.

• Input: Image, top left pixel and bottom right pixel.

6



• Action: Cropping an image into a specific size.

• Output: Cropped Image.

• Pre-condition: Image variable in memory must not be empty.

• Post-condition: None.

• DEP: SR1, SR7, SR10, SR9, MB3, MB6, MB7.

4. ID: SR4

• Title: GetObjectLocationInImage

• DESC: The server would find the object location inside an image
using feature matching.

• Input: Image Features

• Action: Detecting the location of objects in this image.

• Output: Locations of objects as pixels (x,y)

• Pre-condition: Image Sent From the database.

• Post-condition: Storing the results.

• DEP: SR9, SR10, SR11, SR12.

5. ID: SR5

• Title: SendReplyError

• DESC: The server will send a reply with an error code to firebase
database.

• Input: None.

• Action: Sending a reply to firebase database.

• Output: Sent Conformation

• Pre-condition: Exception fired or error caught.

• Post-condition: None.

• DEP: SR9, SR10, SR12.

6. ID: SR6

• Title: StoreImageInformationInDB

• DESC: The Server would send the image information to firebase
database.

• Input: Image features, keypoints, geohash and path in firebase stor-
age.

• Action: Storing image data in firebase database.

• Output: Image unique key in database.

• Pre-condition: All information must be valid and complete.

7



• Post-condition: None.

• DEP: SR1, MB1, SR9, SR10, MB3, MB6, MB7.

7. ID: SR7

• Title: DownloadImageFromDB

• DESC: The Server would download an image from firebase storage
to the local file system.

• Input: Image path in firebase storage as string.

• Action: Downloading image to local file system.

• Output: Image successfully downloaded and a path to the image in
the local file system.

• Pre-condition: The path to image must be correct in firebase.

• Post-condition: None.

• DEP: SR9, SR10.

8. ID: SR8

• Title: ExtractImageFeaturesAndKeypoints

• DESC: The Server would extract features from an image using ORB
algorithm.

• Input: Image.

• Action: Extracting image features.

• Output: Features array and keypoints array.

• Pre-condition: Image variable in memory must not be empty and
image must have sufficient distinct features for extraction.

• Post-condition: None.

• DEP: SR1, SR7.

9. ID: SR9

• Title: InitializePyrebase

• DESC: The server will initialize pyrebase which is a python wrapper
for firebase connection class.

• Input: key-value pair firebase configuration information.

• Action: Initializing database connection.

• Output: None.

• Pre-condition: Configuration information must be correct.

• Post-condition: None.

• DEP: None.

8



10. ID: SR10

• Title: AuthenticateUser

• DESC: The server will sign in to firebase with a specified username
and password to receive authority to manipulate database and stor-
age.

• Input: username and password.

• Action: Authenticating firebase user.

• Output: Authentication Token.

• Pre-condition: A super user account must be created in the firebase
web application.

• Post-condition: None.

• DEP: SR9.

11. ID: SR11

• Title: QueryForImagesInGeohash

• DESC: The server will query for all images in a specific range using
geohash. Geohash is used as an external library.

• Input: Geohash.

• Action: Querying Images.

• Output: Array of images information.

• Pre-condition: Geohash must be valid.

• Post-condition: None.

• DEP: SR9, SR10.

12. ID: SR12

• Title: ListenOnDatabaseForRequests

• DESC: The server will listen on firebase database to be notified of
new requests.

• Input: None.

• Action: Listening for requests.

• Output: Periodically receive a request message containing image,
request code and maybe a new object.

• Pre-condition: Application must be connected to firebase.

• Post-condition: None.

• DEP: SR9, SR10.

13. ID: SR13

9



• Title: MatchFeatures

• DESC: The server will determine if a new image already exists in the
database by matching its features with other images’ features that
already exist in the same geohash of the new image using Brute Force
matcher.

• Input: New image features, Array of images’ features in the same
geohash.

• Action: Feature Matching.

• Output: The index of the image in the array if it was found or -1.

• Pre-condition: image features must be valid.

• Post-condition: None.

• DEP: SR9, SR10, SR12, SR11.

14. ID: SR14

• Title: QueryForObjectsInImage

• DESC: The server will query for objects in a specific image from
firebase database.

• Input: Image unique key in firebase database.

• Action: Querying objects.

• Output: Array of objects information.

• Pre-condition: Image key must be correct.

• Post-condition: None.

• DEP: SR9, SR10, SR12, SR11.

15. ID: SR15

• Title: SendReplyObjectsFound

• DESC: The server will send a reply with objects found success code
to firebase database.

• Input: Objects locations and additional information array.

• Action: Sending a reply to firebase database.

• Output: Sent Conformation.

• Pre-condition: None.

• Post-condition: None.

• DEP: SR9, SR10, SR12, SR11.

16. ID: SR16

• Title: StoreObjectInformationInDatabase

10



• DESC: The server would send the object information to firebase
database.

• Input: Object’s features, image unique id.

• Action: Storing an object in firebase database.

• Output: Sent Conformation.

• Pre-condition: Object’s information must be correct.

• Post-condition: None.

• DEP: SR9, SR10, SR12, SR11.

17. ID: SR17

• Title: RefreshAuthenticationToken

• DESC: The server would continuously refresh the authentication to-
ken each 45 minutes as it expires each hour using threading.

• Input: Account’s refresh token.

• Action: Refreshing authentication token.

• Output: Authentication Token.

• Pre-condition: User must be already authenticated and refresh token
must be correct.

• Post-condition: None.

• DEP: SR9, SR10, SR12, SR11.

18. ID: SR18

• Title: DeleteRequest

• DESC: The server would delete a request from firebase database after
processing it.

• Input: Request id.

• Action: Deleting request from firebase database.

• Output: Sent Confirmation.

• Pre-condition: Request id must be correct.

• Post-condition: None.

• DEP: SR9, SR10, SR12, SR11.

19. ID: SR19

• Title: EncryptPassword

• DESC: The server will encrypt the password of the user to prevent
hacking.

• Input: User’s Password

11



• Action: Encrypting the user’s password.

• Output: The Encrypted Password

• Pre-condition: The user must enter their password.

• Post-condition: None.

• DEP: SR10.

20. ID: SR20

• Title: DecryptPassword

• DESC: The server will dencrypt the password of the user to use it
on further notice.

• Input: User’s Encrypted Password.

• Action: Dencrypting User’s Encrypted Password.

• Output: User’s Password

• Pre-condition: The user must enter their password, and must be
encrypted

• Post-condition: None.

• DEP: SR10, SR21.

3.2 Mobile

1. ID: MB1

• Title: ResizeImage

• DESC: The Mobile would resize an image to a specific size.

• Input: Image, desired width and desired height.

• Action: Resizing an image.

• Output: Resized Image.

• Pre-condition: Image variable in memory must not be empty and
both width and height must not be negative or zero.

• Post-condition: None.

• DEP: None.

2. ID: MB2

• Title: SendRequestCheckLocation

• DESC: The Mobile would send a request to the server to get objects
in a specific GPS location.

• Input: Request code, geolocation(geohash).

• Action: Sending a request to the server.

12



• Output: Server success and location of objects.

• Pre-condition: Server must be online.

• Post-condition: None.

• DEP: None.

3. ID: MB3

• Title: SendRequestStoreObject

• DESC: The Mobile would send a request to the server to get objects
in a specific GPS location.

• Input: Request code, geolocation(geohash)and object.

• Action: Sending a request to the server.

• Output: Server success and location of objects.

• Pre-condition: Server must be online.

• Post-condition: None.

• DEP: None.

4. ID: MB4

• Title: EncodeGeohash

• DESC: The Mobile would hash GPS coordinates to a geohash.

• Input: Latitude and longitude.

• Action: Hashing GPS coordinates.

• Output: geohash.

• Pre-condition: GPS must be running and coordinates must be valid.

• Post-condition: None.

• DEP: None.

5. ID: MB5

• Title: SuperimposeObject

• DESC: The mobile would superimpose a virtual object in a specific
location on the camera.

• Input: Location as pixel(x,y).

• Action: Superimposing a virtual object.

• Output: Virtual object.

• Pre-condition: Location must be within image pixels.

• Post-condition: None.

• DEP: None.

13



6. ID: MB6

• Title: OpenCamera

• DESC: Start the mobile’s camera in video mode.

• Input: Mobile camera.

• Action: Starting the mobile camera.

• Output: Video stream.

• Pre-condition: Mobile must contain camera.

• Post-condition: None.

• DEP: None.

7. ID: MB7

• Title: CaptureImageFromVideo

• DESC: The mobile would capture a single image from the camera’s
video stream.

• Input: Video.

• Action: Capturing an image.

• Output: Image.

• Pre-condition: Camera video must be running.

• Post-condition: None.

• DEP: None.

8. ID: MB8

• Title: DisplayMenu

• DESC: The mobile would display a menu to the user.

• Input: Menu object.

• Action: Displaying UI to the user.

• Output: Menu.

• Pre-condition: Menu object must be initialized.

• Post-condition: None.

• DEP: None.

9. ID: MB9

• Title: InitializeMenu

• DESC: The mobile would initialize a menu’s components.

• Input: Menu object.

• Action: Initializing a menu.

14



• Output: None.

• Pre-condition: None.

• Post-condition: None.

• DEP: None.

10. ID: MB10

• Title: HideMenu

• DESC: The mobile would hide a menu from the user.

• Input: Menu object.

• Action: Hiding UI from the user.

• Output: None.

• Pre-condition: Menu object must be initialized.

• Post-condition: None.

• DEP: MB9

11. ID: MB11

• Title: AddListenter

• DESC: The mobile would add an event listener to a menu’s compo-
nent.

• Input: Menu component.

• Action: Adding a listener to a menu’s component.

• Output: Callback function.

• Pre-condition: Input function must be correct.

• Post-condition: None.

• DEP: None.

12. ID: MB12

• Title: EditComponentText

• DESC: The mobile would edit a component’s text.

• Input: Menu component.

• Action: Editing a component’s text.

• Output: Component’s text updated.

• Pre-condition: Menu component must be null.

• Post-condition: None.

• DEP: None.

13. ID: MB13

15



• Title: PlayAnimation

• DESC: The mobile would play an animation of virtual object.

• Input: Virtual object animator component.

• Action: Playing an animation.

• Output: Virtual object performing animation.

• Pre-condition: Animator and virtual object must not be null.

• Post-condition: None.

• DEP: None.

14. ID: MB14

• Title: PlayAudio

• DESC: The mobile would play an audio file.

• Input: Audio file and audio source component.

• Action: Playing an audio file.

• Output: Audio played.

• Pre-condition: Audio file must exist and audio source must not be
null.

• Post-condition: None.

• DEP: None.

15. ID: MB15

• Title: GetGPSLatLong

• DESC: The mobile would read the GPS sensor.

• Input: GPS sensor.

• Action: Reading the GPS sensor.

• Output: Latitude and longitude.

• Pre-condition: GPS sensor must be enabled.

• Post-condition: None.

• DEP: None.

16. ID: MB16

• Title: GetCompassHeading

• DESC: The mobile would read the compass sensor.

• Input: Compass sensor.

• Action: Reading the compass sensor.

• Output: Compass heading.

16



• Pre-condition: Compass sensor must be enabled.

• Post-condition: None.

• DEP: None.

17. ID: MB17

• Title: PollForReply

• DESC: The mobile would poll the database continuously for a reply
until received.

• Input: Request ID.

• Action: Polling for a reply.

• Output: Reply received.

• Pre-condition: Request ID must be correct.

• Post-condition: None.

• DEP: None.

18. ID: MB18

• Title: StoreImageAsync

• DESC: The mobile would store an image firebase storage asynchronously.

• Input: Image byte data and image path in storage.

• Action: Store image in firebase storage.

• Output: Confirmation Sent.

• Pre-condition: Image byte data and path must be correct.

• Post-condition: None.

• DEP: None.

19. ID: MB19

• Title: ToJson

• DESC: The mobile would convert a class object o JSON.

• Input: Instance of class.

• Action: Converting to JSON.

• Output: JSON object.

• Pre-condition: Instance must be initialized.

• Post-condition: None.

• DEP: None.

20. ID: MB21

17



• Title: StartCoroutine

• DESC: The mobile would start a coroutine.

• Input: Function.

• Action: Starting a coroutine.

• Output: Coroutine started.

• Pre-condition: None.

• Post-condition: None.

• DEP: None.

3.3 Admin

1. ID: DE1

• Title: Place Object

• DESC: The Admin would superimpose an object on real time objects.

• Input: Location, SensorsReadings

• Action: The Algorithms would work in the server and send the image
into the mobile device.

• Output: An Object

• Pre-condition: Working Mobile Camera, Working Sensors, Internet
connection.

• Post-condition: Opening the application, connecting to internet.

• DEP: SR1, SR2, SR3, SR4, SR5, SR6, Algo1, Algo2, Algo3, DE2,
DE3, DE4, De5.

2. ID: DE2

• Title: Get Information From the GPS.

• DESC: The Admin would get the location of the mobile device from
the sensor.

• Input: Permissions.

• Action: The GPS would detect the Location.

• Output: Latitude, Longitude

• Pre-condition: GPS must be working, The sensor should be outside.

• Post-condition: Re-reading the location.

• DEP: None.

3. ID: DE3

• Title: Get Information From the Gyroscope.

18



• DESC: The Admin would get the orientation of the mobile device
from the sensor.

• Input: Permissions.

• Action: The Gyroscope would detect the orientation.

• Output: Quaternion.

• Pre-condition: Gyroscope must be working.

• Post-condition: Re-reading the location.

• DEP: None.

4. ID: DE4

• Title: Get Information From the compass.

• DESC: The Admin would get the angle of the mobile device from the
sensor.

• Input: Permissions.

• Action: The compass would detect the angle.

• Output: Vector 3.

• Pre-condition: compass must be working.

• Post-condition: Re-reading the location.

• DEP: None.

5. ID: DE5

• Title: Get Information From the accelerometer.

• DESC: The Admin would get the rate of change of the mobile device
from the sensor.

• Input: Permissions.

• Action: The accelerometer would detect the rate of change.

• Output: Vector 3.

• Pre-condition: accelerometer must me working.

• Post-condition: Re-reading the location.

• DEP: None.

3.4 Player

1. ID: PL1

• Title: Attack.

• DESC: The player would attack an enemy, either by spells, hands or
equipped items.

19



• Input: A Command.

• Action: the player would attack the enemy.

• Output: The enemy’s health would decrease.

• Pre-condition: There must be an enemy to attack.

• Post-condition: The enemy’s health decreases.

• DEP: PL4, PL5, PL6.

2. ID: PL2

• Title: Defend.

• DESC: The player can defend itself against the enemies attacks.

• Input: A Command.

• Action: The player would be in a defensive position.

• Output: The player defended itself.

• Pre-condition: The enemy attacking.

• Post-condition: According to the equipped item or used item the
player would decrease its health or not.

• DEP: PL4, PL5, PL6.

3. ID: PL3

• Title: Flee.

• DESC: The player can flee from a combat.

• Input: A Command.

• Action: The player fleeing.

• Output: The player no longer in combat.

• Pre-condition: The enemy’s health should be low.

• Post-condition: The enemy not following the player.

• DEP: PL1, PL2.

4. ID: PL4

• Title: Use An Item.

• DESC: The player can consume an item like a potion or a poison on
an enemy.

• Input: A Command.

• Action: The player consuming an item.

• Output: The player has a Buff on him, or the enemy has a DeBuff
on him.

20



• Pre-condition: The player must have the specific item to use.

• Post-condition: None.

• DEP: PL7.

5. ID: PL5

• Title: Equip An Item.

• DESC: The player can equip an item to use like a weapon or an
armor.

• Input: The item to Equip.

• Action: The player equipping the selected item.

• Output: The player equipped the item.

• Pre-condition: The player must have the item to equip it.

• Post-condition: The player’s rating increases.

• DEP: PL7.

6. PL6

• Title: UnEquip An Item.

• DESC: The player can unequip an item to use like a weapon or an
armor.

• Input: The item to unEquip.

• Action: The player unequipping the selected item.

• Output: The player unequipped the item.

• Pre-condition: The player must have an item equipped to unequip
it.

• Post-condition: The player’s rating decreases.

• DEP: PL7.

7. PL7

• Title: Craft An Item.

• DESC: The player can craft an item to use. Like a potion, a poison,
weapon or an armor.

• Input: Materials

• Action: The player crafting the selected item.

• Output: Crafted item in inventory.

• Pre-condition: The player must have the necessary materials to craft
the item.

• Post-condition: There must be a space in the inventory.

21



• DEP: None.

8. PL8

• Title: Notify Mission Update.

• DESC: If the player finishes or failed a mission, there will be an alarm
for them.

• Input: Quest, Quest Status.

• Action: Checking the mission status.

• Output: Notification for the quest status.

• Pre-condition: The player must have taken a quest.

• Post-condition: None.

• DEP: None.

4 Interface Requirements

4.1 User Interfaces

4.1.1 Player Primitive Graphical User Interface

22



4.1.2 Admin Primitive Graphical User Interface

4.1.3 API

1. Pyrebase: is a Firebase wrapper for python.

5 Performance Requirements

For the data to be uploaded from the server to the smartphone to be process
will take about 2 seconds. for the information to be sent to the smartphone
would take about 0.5 seconds.

6 Other non-functional attributes

6.1 Usability

As the concept of augmented is new, the game must be easy to use and intuitive.
The wanderer would use the unity Graphical User Interface to help the player
get around the game much easier. Unity GUI allows the developer to clarify
to the user the use of their system, allowing to customize the GUI accordingly
would make it for the user to easily grasp the logic of the system. (MB8, MB9,
MB10, MB11, MB12, MB13, MB14)

6.2 Resource Utilization

Must be a priority as mobile devices resource are scarce and must be utilized
with caution. That most of the computations would be on a separate server,
rather than on the mobile phone. (Server Side in Functional Requirements)

6.3 Security

The game must have an encryption key for the passwords of the users, to protect
their privacy. The system is equipped with the encryption and decryption of

23



the user’s password (SR20, SR21).

6.4 Scalability

The system can increase some features like spells, effects or quests without
changing the structure of the project. The system can change the algorithms
the system uses. (IAlgorithms, ICombat)

7 Preliminary Object-Oriented Domain Analy-
sis

7.1 Class descriptions

Figure 2: Primitive Class Diagram

24



7.2 Interface Classes

7.2.1 ICombat

Purpose: An interface that handles all the main attributes in the combat mech-
anism in that game. It includes attacking, defending and using item to Buff or
DeBuff.

7.2.2 IAlgorithm

Purpose: An interface that handles all the algorithms that the server would
use to convert to gray scale, resize an image, running feature extraction and
comparing the feature extracted image.

7.3 Design Patterns

7.3.1 Singleton Design Pattern

A software design pattern that restricts the instantiate of a class to one object.
This is useful when exactly one object is needed to coordinate actions across
the system. (Singleton Class)

7.3.2 Factory Design Pattern

A software design pattern that is used when a method returns one of several
possible classes that share a common super class. Our project uses the factory
pattern to return one of the non player characters. (NonplayerFactory Class)

7.3.3 Observer Design Pattern

A software design pattern in which an object maintains a list of its dependents
and notifies them automatically of any state changes. (Notification Class)

7.3.4 Strategy Design Pattern

A software design pattern that enables selecting an algorithm at runtime. Our
project uses the strategy pattern to select from one algorithm to another. (IAl-
gorithm Interface, ICombat Interface)

7.4 Class Descriptions

7.4.1 Character

1. Class Name: Character

2. List Of Superclasses: None.

3. List of Subclasses: Player, NonPlayer

25



4. Purpose: This class’s purpose is to handle any character in the game’s
information.

5. Collaborations: Charclass, Skill, Player, NonPlayer, Effect, Stats.

6. Attributes: AvatarName, Level, CharClass, Skill, Health, Mana, stamina,
Stats, Backpack, DefendPoint, Evation, AttackPoink, Gold, HealthRegn,
ManaRegn, staminaRegn, CriticalChance, BlockPoints, Effect, Exp.

7. Operations: LevelUp(Skill)

7.4.2 Player

1. Class Name: Player

2. List Of Superclasses: Character

3. List of Subclasses: None.

4. Purpose: This class contains the user’s progress in the game.

5. Collaborations: ICombat, Quests.

6. Attributes: Items, Quests, Email, Password, Username, Realname, DOB.

7. Operations: CraftItem(Item), GetResources(), ViewBackpack(BagPack),
BuyItems(Trader), SellItems(Trader), AcceptQuest(Quest), DropItem(Item),
ChooseCharClass(Charclass), Login(Username, password), Register(Email,
Password, Username, Realname, DOB), Flee(), EquipItem(Item), Un-
EquipItem(Item).

7.4.3 NonPlayer

1. Class Name: NonPlayer.

2. List Of Superclasses: Character.

3. List of Subclasses: Trader, Monsters, QuestGiver.

4. Purpose:This class contains all the NPCs information and their function-
ality.

5. Collaborations: NonPlayerFactory.

6. Attributes: Type, Ispermenent, Timespan.

7. Operations: None.

26



7.4.4 NonPlayerFactory

1. Class Name: NonPlayerFactory.

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This class is the design pattern factory that allows the admin to
create more instants of the nonplayer class.

5. Collaborations: NonPlayer.

6. Attributes: None.

7. Operations: CreateChar.

7.4.5 Monster

1. Class Name: Monster

2. List Of Superclasses: Nonplayer.

3. List of Subclasses: None.

4. Purpose: This class contains the monster’s information and type.

5. Collaborations: ICombat.

6. Attributes: IsAggresive.

7. Operations: StartCombat(ICombat).

7.4.6 Trader

1. Class Name: Trader

2. List Of Superclasses: NonPlayer

3. List of Subclasses: None.

4. Purpose: This class can initiate trading system with the user.

5. Collaborations: Items

6. Attributes: TraderType.

7. Operations: OpenShop(), BuyItems(Items), SellItems(Items).

27



7.4.7 QuestGiver

1. Class Name: QuestGiver

2. List Of Superclasses: NonPlayer

3. List of Subclasses: None.

4. Purpose: The NPC gives quests to the player to finish them.

5. Collaborations: Quests.

6. Attributes: Quest.

7. Operations: GiveQuest(Quest).

7.4.8 Quest

1. Class Name: Quest

2. List Of Superclasses: None.

3. List of Subclasses: Objectives.

4. Purpose: This class contains the Quests Information.

5. Collaborations: QuestGiver.

6. Attributes: Name, Description, QuestStatus, QuestType, Objectives, Re-
wardCoins, RewardExp.

7. Operations: StartQuest(QuestGiver).

7.4.9 Objectives

1. Class Name: Objectives

2. List Of Superclasses: Quests.

3. List of Subclasses: None.

4. Purpose: This class contains the missions inside the quests given.

5. Collaborations: None.

6. Attributes: Name, Description, ObjectiveStatus, ObjectiveType.

7. Operations: None.

28



7.4.10 Stats

1. Class Name: Stats

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This class contains all the special abilities that the player gains.
Like crafting new items or increasing the backpack’s limit.

5. Collaborations: Buff, DeBuff.

6. Attributes: Name, Description, Value, MaxValue, MinValue.

7. Operations: None.

7.4.11 Bagpack

1. Class Name: Bagpack

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This class allows the user to carry items and equipment.

5. Collaborations: Character.

6. Attributes: Items, MaxWeight.

7. Operations: Sort(), Empty(), CalcMaxWeight(), UpdateCraftingMenu(Items).

7.4.12 Charclass

1. Class Name: Charclass

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This class specify the player’s class. For example, A mage class,
A Warrior Class or A Hunter Class.

5. Collaborations: Character.

6. Attributes: Name, Description.

7. Operations: None.

29



7.4.13 ICombat

1. Class Name: ICombat.

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This interface initiates the player’s comabt mechanism, like at-
tacking.

5. Collaborations: Player.

6. Attributes: None.

7. Operations: Attack(), Defend(), UseItem().

7.4.14 Skill

1. Class Name:Skill

2. List Of Superclasses: None.

3. List of Subclasses: ActiveSkill, PassiveSkill.

4. Purpose: This class’s purpose is to map the player’s skills, which will help
them with surviving the game.

5. Collaborations: Character, Charclass, Effect.

6. Attributes: Name, Description, MinLevelReq, Charclass, Type, Effect,
SkillLevel.

7. Operations: ExcuteSkill().

7.4.15 ActiveSkill

1. Class Name: ActiveSkill.

2. List Of Superclasses: Skill.

3. List of Subclasses: None.

4. Purpose: This Class affect the player’s and enemy’s health, mana and
Stamina. Either by buffing or debuffing.

5. Collaborations: Charclass, Effect.

6. Attributes: ManaCost, StaminaCost and HealthCost.

7. Operations: None.

30



7.4.16 PassiveSkill

1. Class Name: PassiveSkill.

2. List Of Superclasses: Skill.

3. List of Subclasses: None.

4. Purpose: This class will help the player gain more abilities to help advance
the player.

5. Collaborations: None.

6. Attributes: IsPermenant, TimeSpan.

7. Operations: None.

7.4.17 Effect

1. Class Name: Effect.

2. List Of Superclasses: None.

3. List of Subclasses: Buff, Debuff, Restore, Damage.

4. Purpose: This class puts special effect on weapons and armors that either
will help the player gain special status or will put the enemy at a temporary
disadvantage.

5. Collaborations: Consumables, Weapons, Armor, Character.

6. Attributes: Name, Description, Type.

7. Operations:AddEffect(Item).

subsubsectionBuff

1. Class Name: Buff.

2. List Of Superclasses: Effect.

3. List of Subclasses: None.

4. Purpose: This class will have the specific effects which buffs the character’s
Stat.

5. Collaborations: Stat.

6. Attributes: Stats, Value, NumberOfTurns.

7. Operations: None.

31



7.4.18 Restore

1. Class Name: Restore.

2. List Of Superclasses: Effect.

3. List of Subclasses: None.

4. Purpose: This class will have the specific effects which restores the char-
acter’s attributes.

5. Collaborations: None.

6. Attributes: Attribute, Value.

7. Operations: None.

7.4.19 DeBuff

1. Class Name: DeBuff.

2. List Of Superclasses: Effect.

3. List of Subclasses: None.

4. Purpose: This class will have the specific effects which debuffs the char-
acter’s Stat.

5. Collaborations: Stat.

6. Attributes: Stats, Value, NumberOfTurns.

7. Operations: None.

7.4.20 Damage

1. Class Name: Damage.

2. List Of Superclasses: Effect.

3. List of Subclasses: LingeringDamage.

4. Purpose: This class will have the specific effects which damages the char-
acter’s attributes.

5. Collaborations: None.

6. Attributes: Attribute, Value.

7. Operations: None.

32



7.4.21 LingeringDamage

1. Class Name: LingeringDamage.

2. List Of Superclasses: Damage.

3. List of Subclasses: None.

4. Purpose: This class will have the specific effects which damages the char-
acter’s attributes over time (turns).

5. Collaborations: None.

6. Attributes: NumOfTurns.

7. Operations: None.

7.4.22 Items

1. Class Name: Items.

2. List Of Superclasses: None.

3. List of Subclasses: Consumables, Weapons, Armor, Misc.

4. Purpose: This class will contain all the information needed for the items
in the game.

5. Collaborations: None.

6. Attributes: Name, Description, Weight, IsCraftable, Cost, Type, Icon,
Rarity, Misc.

7. Operations: None.

7.4.23 Consumables

1. Class Name: Consumables.

2. List Of Superclasses: Items.

3. List of Subclasses: None.

4. Purpose: This class will contain all the specific information needed for the
consumables.

5. Collaborations: Effect.

6. Attributes: NumberOfUses, ConsumablesType, Effect.

7. Operations: None.

33



7.4.24 Weapons

1. Class Name: Weapons.

2. List Of Superclasses: Items.

3. List of Subclasses: None.

4. Purpose: This class will contain all the specific information needed for the
weapons.

5. Collaborations: Effect.

6. Attributes: AttackPoint, Durability, MinLevelToEquip, WeaponType, Ef-
fect.

7. Operations: RenewEffect(), RepairWeapon().

7.4.25 Armor

1. Class Name: Armor.

2. List Of Superclasses: Items.

3. List of Subclasses: None.

4. Purpose: This class will contain all the specific information needed for the
armors.

5. Collaborations: Effect.

6. Attributes: DefensePoint, Durability, MinLevelToEquip, ArmorType, Ef-
fect.

7. Operations: RenewEffect(), RepairArmor().

7.4.26 Misc

1. Class Name: Misc.

2. List Of Superclasses: Items.

3. List of Subclasses: None.

4. Purpose: This class will contain all the specific information needed for the
misc items.

5. Collaborations: None.

6. Attributes: MiscType.

7. Operations: None.

34



7.4.27 Admin

1. Class Name: Admin

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The Admin has the ability to Place An object in a certain place.
This object can be a quest or a monster.

5. Collaborations: Sensors, Model, Object.

6. Attributes: RealName, Email, Username, Password.

7. Operations:Login(Username, Password), Register(Username, Password, Re-
alName, Email), PlaceObject(Sensors, ImageClassificationSystem, Object)

7.4.28 Sensors

1. Class Name: Sensors

2. List Of Superclasses: None.

3. List of Subclasses: GPS, Compass, GyroScope, Acclermeter.

4. Purpose: The Sensors Class is aimed to collect the information of the
sensors on the mobile Phone

5. Collaborations: Admin.

6. Attributes: None.

7. Operations: GetInformation().

7.4.29 GPS

1. Class Name: GPS

2. List Of Superclasses: Sensors.

3. List of Subclasses: None.

4. Purpose: The GPS detects the location of the mobile phone.

5. Collaborations: None.

6. Attributes: Latitude, Longitude.

7. Operations: None.

35



7.4.30 Compass

1. Class Name: Compass

2. List Of Superclasses: Sensors.

3. List of Subclasses: None.

4. Purpose: The compass captures the orientation of the mobile phone. Like
the North, South, East or West.

5. Collaborations: None.

6. Attributes: Angle.

7. Operations: Enable().

7.4.31 Accelerometer

1. Class Name: Accelerometer

2. List Of Superclasses: Sensors.

3. List of Subclasses: None.

4. Purpose: The Accelerometer detects the change of movement of the mobile
phone.

5. Collaborations: None.

6. Attributes: x, y, z.

7. Operations: None.

7.4.32 GyroScope

1. Class Name: GyroScope

2. List Of Superclasses: Sensors.

3. List of Subclasses: None.

4. Purpose: The GyroScope detects the orientation and the angle of the
mobile phone according to the x, y and z axis.

5. Collaborations: None.

6. Attributes: Angle.

7. Operations: Enable().

36



7.4.33 Model

1. Class Name: Model

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This class focuses on the conversion of the sent image from the
mobile phone to be handled and preform the algorithms. This class is the
intermediate between the Admin and the mobile phone.

5. Collaborations: Admin, IAlgorithm, Object, Notification, Singleton.

6. Attributes: Username, Password, IAlgorithm.

7. Operations: ReadImage(Image), WriteImage(Image), CropImage(Image),
GetObjectLocationInImage(), SendReply(), StoreImageInDB(), Subscribe(Notification).

7.4.34 Object

1. Class Name: Object.

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The object is the augmented object. For example the quests,
shops or monsters.

5. Collaborations: Admin, IAlgorithms.

6. Attributes: ID, Name.

7. Operations: FeatureExtraction(IAlgorithms), CalcAccurcy().

7.4.35 Notification

1. Class Name: Notification.

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The notification notifies the ImageClassificationSystem that there
is a change in the database.

5. Collaborations: Model.

6. Attributes: Observers.

7. Operations: Notify().

37



7.4.36 SingleTon

1. Class Name: SingleTon

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The SingleTon is a software design pattern that restricts the
instantiate of a class to one object. This is useful when exactly one object
is needed to coordinate actions across the system.

5. Collaborations: Model.

6. Attributes: Instance.

7. Operations: GetInstance().

7.4.37 Components

1. Class Name: Components

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The Components provide a unified class for creating UI Ele-
ments.

5. Collaborations: Panels.

6. Attributes: Width, Height, X, Y, Name, IsEnabled.

7. Operations: AddEventListener(), RemoveEventListener().

7.4.38 Panels

1. Class Name: Panels

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The Panels are containers of group of components that forms a
single window.

5. Collaborations: Canvas.

6. Attributes: Width, Height, X, Y, Components.

7. Operations: AddComponents(Components), RemoveComponents(Components),
SetPosition(X, Y), ShowPanel(Panels), HidePanel(Panels).

38



7.4.39 Canvas

1. Class Name: Canvas.

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: The canvas contains the panels and collects them into one win-
dow.

5. Collaborations: Controller.

6. Attributes: Panels, Width, Height.

7. Operations: AddPanels(Panels), HidePanels(Panels).

7.4.40 Controller

1. Class Name: Controller.

2. List Of Superclasses: None.

3. List of Subclasses: None.

4. Purpose: This class handles the information that has been updated from
the package View and sends them to the Model class. The updates from
the Model class get sent to the package View to view them to the player.

5. Collaborations: Canvas, Model.

6. Attributes: None.

7. Operations: UpdateCanvas(Canvas), NotifyModel(Model), ReciveNotifi-
cation(Model).

39



8 Operational Scenarios

Figure 3: Use Case Diagram

40



8.1 Scenario 1: Player’s Scenarios

In this scenario, the player is able to preform several actions that will allow
them to play the game at it’s maximum abilities.

1. The player can Login into our game.

2. The player Register into our game.

3. The player can attack a NPCs.

4. The player can Trade Items With NPCs.

5. The player can Craft items to use later on.

6. The player can Accept Quests from NPCs and go on adventure.

7. The player can Get resources to craft items.

41



8.2 Scenario 2: Server’s Scenarios

The Image Classification System’s main function is to process images and
apply the object recognition algorithm to superimpose objects into real time ob-
jects. The server first read the image from the database, apply resize algorithm
on the image, and then compare the featured extracted image to the images in
the database. If there was a match, that means that there are objects in here,
and then return array of objects to the database to serve to the mobile device.
If there wasn’t a match, then the server asks the mobile device to capture the
environment and save it in the database.

42



9 Preliminary Schedule Adjusted

Figure 4: Preliminary Schedule Table.

10 Preliminary Budget Adjusted

Figure 5: Preliminary Budget Table.

11 Appendices

11.1 Definitions, Acronyms, Abbreviations

1. Firebase: A mobile and web application platform.

2. OpenCv: a library of programming functions mainly aimed at real-time
computer vision.

3. Unity Game Engine: a cross-platform game engine, which is primarily
used to develop video games and simulations for computers, consoles and
mobile devices.

4. Geolocation: estimation of the real-world geographic location of an object.

5. RPG: role-playing game is a game in which players assume the roles of
characters in a fictional setting.

6. NPC: Non player character.

43



7. Buff: a temporary beneficial status effect in some video games on a char-
acter or an enemy.

8. DeBuff: a temporary detrimental status effect in some video games on a
character or an enemy.

9. Lure Modules: items players can use at a Pokestop to increase Pokemon
Spawn Rates.

12 References

[1] Tateno, Masaru, et al. ”New game software (Pokmon Go) may help youth
with severe social withdrawal, hikikomori.” Psychiatry research 246 (2016): 848-
849.

[2] Althoff, Tim, Ryen W. White, and Eric Horvitz. ”Influence of Pokmon
Go on physical activity: study and implications.” Journal of medical Internet
research 18.12 (2016).

[3] Denham, Jess (July 12, 2016). ”Pokmon Go has won the praise of gender
fluid gamers”. Archived from the original on July 15, 2016. Retrieved July 19,
2016

[4]Cosimano, Mike (July 12, 2016). ”Review: Pokemon Go”. Destructoid.
Archived from the original on July 17, 2016. Retrieved July 12, 2016.

[5] Concepcion, Miguel (July 12, 2016). ”Pokemon GO Review”. GameSpot.
Archived from the original on July 17, 2016. Retrieved July 12, 2016.

[6] Shunichi Kasahara , Valentin Heun , Austin S. Lee , Hiroshi Ishii, Second
surface: multi-user spatial collaboration system based on augmented reality,
SIGGRAPH Asia 2012 Emerging Technologies, p.1-4, November 28-December
01, 2012, Singapore, Singapore

44


