The Wanderer: Implementing Markerless
Augmented Reality with Object Position
Awareness

Mina Samir, Ahmed Hanie, Aly Aboulgheit, Karim Hossam
Supervised by: Dr. Ayman Ezzat and Eng. Noha Elmasry

February 13, 2018

1 Introduction

1.1 Purpose

In This document, we will describe the Wanderer’s core flow of data. We will
present our class diagram that will define the construction of our game in an
object oriented manner. The database will map the stored data inside our
project. The sequence diagram defines the roles of the player and the admin.
We will also talk about the server and how it functions, what are the algorithms
that are in use.

1.2 Scope

The Wanderer aims to entertain out-going people that enjoy moving around
and having fun. The game is a location-based augmented reality game that
everyone should enjoy. The user will feel that they are inside the game, taking
adventures and completing tasks that will help them level up and become more
adaptive toward the gameplay. The wanderer will also help by adding quests in
points of interests like charity work, and blood donations vans. These locations
can also be added into hot sales for advertisements to certain shops.

1.3 Overview

Augmented reality games has taken over the world by a surprise starting with
Ingress to Pokemon GO [1]. This field makes the user entertained and help
developers understand the use the markerless augmented reality algorithms.
The idea of The Wanderer is that the user go to a specified real time place to
accomplish a certain quest, this quest could be fetching something from a place
and returning it, delivering a certain item from a place to another, or combating
some enemies. The quest will be located using the smartphones sensors fused

together. GPS to locate the quest in the map, using gyroscope to locate the
orientation on the quest, and the compass to locate the quests direction relative
to the geographic cardinal directions , once the user enters the field, the sensor
fusion will activate to locate the quest. The quest will be superimposed by
using the markerless augmented realitys algorithm object recognition and with
the help of the smartphones sensor fusion, the item will be augmented on real
time objects. Same strategy will be applied on the enemy, or items.

1.4

1.

Definitions and Acronyms

Firebase: A mobile and web application platform.

. OpenCv: a library of programming functions mainly aimed at real-time

computer vision.

Unity Game Engine: a cross-platform game engine, which is primarily
used to develop video games and simulations for computers, consoles and
mobile devices.

Geolocation: estimation of the real-world geographic location of an object.

RPG: role-playing game is a game in which players assume the roles of
characters in a ctional setting.

NPC: Non player character.

Buff: a temporary benecial status eect in some video games on a character
or an enemy.

DeBuff: a temporary detrimental status eect in some video games on a
character or an enemy.

Lure Modules: items players can use at a Pokestop to increase Pokemon
Spawn Rates.

2 System Overview

Show Augmented Content

Gechash Son

Fig 1: System Overview

2.1 Pre-processing

Gechash Senuar Fushen

Acoelsrometer Corthe reqisesi 1o

oPs Cyrowcaps i o specity acthon

Conpans

User's Device

Fig 2: System Overview: Pre-processing

The mobile phone captures a frame from the camera, and the location of the
user. The location is encoded by using Geohash. Geohash is a public domain
geocoding, which encodes a geographic location into a short string of letters
and digits. It is a hierarchical spatial data structure which subdivides space
into buckets of grid shape, which is one of the many applications of what is
known as a Z-order curve, and generally space-filling curves. The mobile device
re-sizes the captured frame to be more manageable for processing and sending.

2.2 Database Management

Firebase
Clowd-based Database
|MaL]

Automatically Synchronize
[ata across Dewvices

Fig 3: System Overview: Database Management

These information is sent to Firebase database for storage, and the server
receive the captured data for further processing. Firebase is an intermediate
between the server and the mobile device, which ensures the correct movement
of the data from one to another. When the database gets any updates, it sends a
notification to the other party notifying it of the new arrival of data and sending
it if necessary.

2.3 Processing

Distributed
Sorver
read regquest code
1} -extract image features using OREB
-pat ohject from databave

-get object kecation using feature matching
Fhaxtract imape feature uring OREB
-erop image 1o obiain obfect

extract object festures

Fig 4: System Overview: Processing

According to the logged token, if the logged in is an admin then the server will
invoke response 2, else the server will invoke response 1. The admin response will
get the frame, crop the frame to obtain the object and run feature extraction.
The user response, the server gets the response and starts to apply feature
extraction on the sent frame. After that, the server starts to compare between
the stored images in the database and the sent image. If there was a match
then the server sends the response to the database.

2.4 User Interface

Shaonw Suug et ed Contoend

Fig 5: System Overview: User Interface

The database then sends the code for the object that is attached to the im-
age according to the location and the sent processed frame from the server,
the mobile selects the object from the game’s files and superimpose the virtual
object on the real object.

3 System Architecture

3.1 Architectural Design

Mobile Interface
| Login view | ‘ Sign up view | | Mapview ‘
| shop view | ‘ combat view | | Questview ‘
ch_;;t_r;Ier
Sensorreading Command issues

Upload virtual object

Getvirtual object |

magnetometer GPs

Readings ‘
Toggle Menu

Readings

@)

Algorithms Libraries Core

Geo hash opency

Calibration
FLANN pyrebase ARCore
Matching feature

L1

The Wanderer DB(Firebase DB - SQLite)

Classification

Fig 6: Architectural Design

3.1.1 Model
1. Algorithm:

e ORB: The Oriented and Fast rotated Brief algorithm is a fast feature
detector that uses keypoint detection. First it finds the keypoints
and then computes the intensity weighted centroid of the patch with
located corner at center. These keypoints marks the important parts
inside a frame, which is small in size and more easy to compute when
wanting to compare frames.

e CNN [2]: In order to invoke object detection, the server should have
some kind of intelligence to contain the incoming dataset. In this
scenario, we are using CNN deep learning algorithm. The server
takes a frame resize and transpose to match current dataset, then
the server pushes the processed data inside an array to adjure into a

classifier. The incoming frame will be compared with the classifiers
in the database, if the frame passes the threshold then the object
exists and the server will send the response to the database in order
for the mobile to superimpose the virtual object.

FLANN: FLANN algorithm takes each keypoint and starts to apply
a brute force algorithm to compare each keypoint, and returns a
list of common features. According to these common features, the
algorithm decides whether the image is the same or not by adding a
threshold number that filters the bad percentage from the good one.

2. Libraries:

Geohash[3]: Geohash is a public domain geocoding, which encodes
a geographic location into a short string of letters and digits. It
is a hierarchical spatial data structure which subdivides space into
buckets of grid shape. We use these grids to filer the objects when
the user enters them, this will help on superimposing the objects
not only with image detection algorithm, but with the use of GPS
location.

Google Maps: Google Maps is a web mapping service developed by
Google. It offers satellite imagery, street maps, real-time traffic con-
ditions, and route planning for traveling by foot, car, bicycle, or
public transportation. The use of google maps helps the admin on
adding an object for the user by uploading the frame along with the
geohash from the google maps library for filtration.

Pyrebase: Pyrebase is a Python interface to Firebases REST API. It
allows you to use Python to manipulate your Firebase database.

OpenCV: OpenCV is a library of programming functions mainly
aimed at real-time computer vision. It was designed for computa-
tional efficiency and with a strong focus on real-time applications. It
is also used with ORB and FLANN, along side converting the frame
to gray scale and re-sizing the frame.

ARCore: ARCore’s motion tracking technology uses the phone’s cam-
era to identify interesting points, called features, and tracks how
those points move over time. With a combination of the movement
of these points and readings from the phone’s inertial sensors, AR-
Core determines both the position and orientation of the phone as it
moves through space.

3. Core:

DBManager: The Database Manager takes control by notifying the
server with recent updates, like if there’s a new frame arriving or
if the connection is closed. The server also uses it when finishing
processing by either sending the location of an object inside a frame,
or storing the processed image along with its geohash.

e Classification: It’s used for classify the objects captured using the
mobile device camera. These objects are processed and then added
to a dataset that is later used for comparison and identifying similar
frames later

e Matching Features: After extraction features, the algorithms takes
the features of the new frame and compare it with the dataset stored
in the database.

e Calibration: Calibration is the process that combines the library AR-
Core with our project, using ARCore will help superimposing virtual
objects in the real world easily with the integration of Unity in it.

3.1.2 Controller
1. Sensor Readings:

e Compass Readings: The compass helps getting the heading of the
mobile device using the north pole. These reading can help getting
the orientation of the mobile device when the user is searching for
the virtual object

e GPS Reading: The GPS is used to filter the objects for the user.
When the user enter a certain place, the server will alert the user for
an object existing in this place, and the user will search for it.

2. Command Issues

e Get virtual object: this command is used to get the exact location
of an object inside a frame. This location will be snapped on a real
object by putting the virtual object accordingly to the pixels of the
frame.

e Upload virtual object: When the admin wants to add an object, the
admin will capture the frame and then adds the coordinate of the
virtual object inside the frame by pressing on the intended place. The
controller will then take the location of the object inside the frame
(pixels) for the user when searching will appear in the intended place

e Toggle Menu: This command will assist with the user interface. Ac-
cording to the object when appearing, this function will activate the
proposed interface and closing it. For example, when the user finds
a quest, this function will open the quest menu for the user to accept
or refuse the quest. Or when the user stumbles in a monster, this
function will open the interface for the combat mechanism.

3.1.3 View
1. Mobile Interface

Login view: This interface is meant for the users to login the game.
Logging in will determine the user’s information as well as the progress
that the user has reached, the user’s quests, and inventory.

Shop view: The shop view will have the trader’s inventory. FEach
trader has an inventory containing items for the user to use. These
items are weapons, armor, potions, or poisons to use inside the com-
bat.

Combat view: The combat view contains the combat mechanism.
This will interacting with the monster the user faced, either by at-
tacking using weapons or magic, defending incoming attacks, using
a potion or poison, or fleeing from the monster.

Sign up view: This interface allows new users to play the game, by
entering their information for the database to store.

Quest view: This menu contains all the user’s quest; either current
quests, completed quests or active quests. Also having the informa-
tion of each quest as well as teh objectives inside each quest.

Map View: This is a map that contains nearby shops or quests for
the user to go to these locations to interact with them.

3.2 Class Diagram

Fig 6:

The Wanderer’s Class Diagram

3.2.1 Character

Ep——
<<Enum>
CharacterType
Wb
QuestGiver
Trader
Player
Character <<Enum>>
Epm———— CharClass
[Ciever: ane
ge
[“charciass: charClass e
Dictionary<Skill, bool>
ats: Dicticnary<stat, int> et
ackpack: Bagpack
ora: im 1<
ctiveEffects: List<Effect>
pesc Dictionaryartribure, doubl <>
utesCurrent: Dicticnarydhttribute, o>
butesMax: Dictionary<Attribute, douple> Stat
butesRegen: Dicticnary<Atcribute, double> Evasion
ype: actack
[rLevelvp 0 : voia petence
Block
Critical
<eInterface>>
+Actack (): bool <Enum>
[+De fend () bool "
Player Oatis
equipment: Dicvicnary<Slot, Toem Featn
|aueste: Listcquest> Mana
Cratclcem(craftedltem: Ttem) : bool Sresine
+GetResource (Material Misc) : bool
[+viewBackpack () : bool NonPlayer
+BuyTten (buyableTtem: Ivem : bool k- -
:se111cen(Se11ab1 eTeen: Tren) = boo [+ : Boolean
[+AcceptQuest (CurrentQuest:Quest): bool [+ }inespan: ne
+DropTem(DropableTten: Trem) : bool
createcnaz (¢ bool A
t +F1ee 02 Dol
Qu tIcem): bool
name: scring [+UnEquipTten(UnEquipTtem: Toem : bool
| aescripticn: scring Teem : b
-questStatus: QuestStatus d Monster
v “questType: QuestType
<<Enam> | objectives: OGbjectives —_ishggresstive: bool
QuestType - int —_model: Model
¥ain rewardEee: inc)+ bool
Trader
TraderType: TraderType
opensnop () : Boolean
<<Enum>
<<Enum>> TraderType
MissionStatus [rackemich
v Objectives [
Inprogress name: string [+ Treamusetunter
Pending [“aescription: strin
Success [missionstatus: MissionStarues
ob: Type: ObjectiveType
<<Enum>
ObjectiveType
K1l
Delivery
Gather
Escorc
Backpack
[—item: Dictionary<ItemType, List<Ivem>>
| Tnaxieignt: inc
TEnpry() : bool
=
[+IsCrateable (item: Irem) : bool

Fig 7: Class Diagram: Character Package

This package describes all the characters that appear inside the game. First
we have the master class that defines all the attributes that any character will
have. Secondly we have the player, or the user, and their capacity inside the
game. The NPCs are what guids the user to play through, like the Quest giver

10

who gives the quest to the player, or the monster that the user attacks. The
Quest is the main component that contains the quest of each user and NPC.

3.2.2 Abilities
Abilities]

Skill
- name: string
-_description: string
— -_minlevelReqg: int
-_charClass: CharClass
— type: SkillType
- effect: Effect

iy

<<Enum>>
SkillType
i ActiveSkill Active
- cost: Dictionary<Attributp, double> Passive
StatModifier
BuffDeBuff
—_stat: Stat
-_value: int
— numOfTurns: int
<<Enum>>
I EffectType
Buff
Y Damage
al - DeBuff
AtiributeModifier Effect e e
| Restore/Dam age E —_name: string ~ Restore
-_attribute: Attribute -_description: string
— value: int - type: EffectType
Lingering
- numOfTurns: int

Fig 8: Class Diagram: Abilities Package

This package manages all of the player’s special abilities like if there’s an actives
skill active on a player like magic attacks. These skills are decided by the player

11

whether if they want to specialize in an attribute. The Effects class manages
certain attributes like recover health, damage monster’s health, increase attack

point.

3.2.3 Items
I\:emsl

i

<<Enum>> 0
MiscType Consumable
+Gold —_numbsrQfUses: int
+0re -_consumableType: ConsumableType
+Belts - effect: Effect
+Fur
<<Enum>>

ConsumableType

Poison

Potion

<<Enumc>
WeaponType
0 Battleaxe
<<Enum> W z“ .
eapons e —
I ItemType Dagger
T W —rrrECr POt Creaisword
Lrmors — MIinLEVEIICEQUip! i0f =
Consumable —_weaponType: WeaponType Staff
- - effect: Effect|] Sword
Warhxe
Warhammer
ltom A
Y
—-_name: string A
- descripticn: string r
~_Welgnt: 1ot —_dclencePoint: int <<E -
-_isCraftable: bool - minlevelToEquip: int ER)
—_Cost: int -_armorType: RmorType N"“O"T\'Pe
—_type: ItemType —_effect: Effect Armor
- icon: byte[] - slot: Slot Boots
—_quality: Quality Gauntlets
- materials: Dicthargr_M_tsc, int> Helmet
A <<Enum>> Shield
Slot
Helmet
Armor
Gauntlet
- Boots
Misc Shield
+ miscType: MiscType Weapons

Fig 9: Class Diagram: Items Package

12

This package manages all the items inside the game. Weapons for the player
to attack monsters, the higher level the more attack point. Armor for defense
and to decrease the incoming attacks. Consumables for the player to use, either
potion to reviving your attributes, or increase hit point, or poison to decrease
monster’s attributes. And misc for the player to trade for gold or craft items
with them.

3.2.4 Design Patterns

=]

[MapMenu

Fig 10: Class Diagram: Model, Controller, and View Packages

13

Model: The Model manages the database and server processes. The pro-
cesses are like feature extraction, frame resize, convert grey scale, or match
features. The database manages the storage of frames, or processed data.
The admin is the main class for the backend, where the admin place ob-
jects for the players to interact with them. These objects can be a NPC,
item, quest, or a shop. The admin can also remove, edit and search for
object using the database and the server.

Singleton Design Pattern: A software design pattern that restricts the
instantiate of a class to one object. This is useful when exactly one object
is needed to coordinate actions across the system

Strategy Design Pattern: A software design pattern that enables selecting
an algorithm at runtime. Our project uses the strategy pattern to select
from one algorithm to another. (IAlgorithm Interface, ICombat Interface,
IUpdateMenu)

Observer Design Pattern A software design pattern in which an object
maintains a list of its dependents and noties them automatically of any
state changes. (Notication Class)

Controller: The Controller’s role is an intermediate between the backend
server and the Interface and vice-versa. The controller receives notification
from the server on which frame is incoming, according to the frame the
controller shows to the user which menu to show. The controller also takes
the events from the event listeners in the interface and sends these events
to the server.

View: The Interface IUpdateMenu is an interface that manages all the
menus inside the game. There are 4 menus that the player may interact
with. The shop menu containing the items that the player can purchase
and the trader managing these items. The quest menu that contains all
the player’s quests and their information and the quest giver. The combat
menu that have all the combat mechanism the player uses to kill the
monster. The maps menu that the player access to know the location of
shops and quests for the player go in a real location to interact with.

14

3.3 Activity Diagram
o

{ Fetch Frame From Database :I

Greform Feature Extraction Using ORB Ngumthm)

&

Greform Feature Comparison Using Brute Force Algurithm)

Yes No

Return Object Location Inside Image Is Accuracy High? Store Image In Database with GeuHadD

Fig 11: Activity Diagram

In this diagram, the flow of the server function is being shown as first the
server will retrieve the frame from the database. Then the server will run the
ORB algorithm which extracts the main features of the frame, by detecting
important keypoint using edge detection algorithm. These keypoints defines
the frame and they are added into a 2D array. The server takes these features
and compare the new extracted frame with every frame captures in the database
using FLANN algorithm that uses a brute force approach. If the accuracy is
high, then that means that the frame exists in the database and has an object
attached with it, the server will then send that location of the object inside the
frame to the database. If the accuracy was low, then that means that this frame
is new, the server will then store the frame for future references along with the
Geohash in the database.

15

3.4 Sequence Diagram

| .
| ! I
Usger 1 \
|

captureFrame() !
I

I

I

I

|

|

captureSensorData()

StartGame 1

-
-

framePreprocessing()

1
1
]
]
]
|
|
|
|
»]
sendRequest() !

extractFrameFeatures()

filterDatasetBy Geohash()
Main L

GeohashFeatures

match()

foy

L
getVirtualOb jectsData()

-
- reply SUCCESS L VirtualObjectsList

augmentObjectsExact Location()
-

Alt

reply SUCCESS
augmentObjectsinyLocation() | [— = = = = = =
-

- -1
- -

Fig 12: Sequence Diagram User’s Side

In this diagram, it shows the flow of the user during gameplay. Unity sends
the captured frame to the server to preform feature extraction, then request fil-
tration using geohash and retrieve the current objects inside the given geohash.
The server then runs FLANN algorithm for feature extraction on the incoming
frames from the database, and reply to unity platform on the mobile device.
Unity platform will then correspond the reply with current objects inside the
mobile device and superimpose the object. If there wasn’t a frame found inside
the database then the server will superimpose the object using geohash.

16

Server Firebase DB

T
| |
Admin I :
|
1 . I
I I
UploadFrameData | _framePreprocessing() !
|
|
|
extractFrameFeatures()
storeFeatures()
storeVirtualObjectData()
replySuccess
- - - === T

!
!
! [
Fig 13: Sequence Diagram Admin’s Side

In this diagram, it shows the flow of the admin when uploading an object. The
admin upload the captured frame to the server, the server extract the features
and store it in the database for future references. The server also stores the
object that the admin wants to superimpose when the user enters the location.
The server then reply to the admin for the success of the operation.

3.5 Design Rationale

The Wanderer is based in MVC design pattern, where the model (server) han-
dles the backend processing like storage management and image processing, the
controller takes the information from the model and deliver it to the view for
the user interface, the view takes the event from the user using the event lis-
teners and deliver it to the controller, then the controller gives it to the model
for further processing. Using the MVC design pattern ensure the re-usability of
the Wanderer for other projects, and the easy maintenance without going deep
inside the core.

The model will use the ORB algorithm, which takes the frame and extract
features from it making sure that no other image will be the same as the last,
if there were a different object inside the image. The FLANN algorithm takes
the processed image and start matching the features from other frames to know
if there is a similar frame in the database.

For further processing, the server should have some kind of intelligence to con-

tain the incoming dataset. In this scenario, we are using CNN deep learning.
The server takes a frame resize and transpose to match current dataset, then

17

the server pushes the processed data inside an array to adjure into a classifier.
The incoming frame will be compared with the classifiers in the database, if
the frame passes the threshold then the object exists and the server will send
the response to the database in order for the mobile to superimpose the virtual
object.

4 Data Design

4.1 Data Description

Fig 14: The Wanderer’s Database

4.2 Data Dictionary

e Item: This table describes all the items in our game, where each item
has it’s own information. Its relations are Misc, Consumables, Weapons,
Armor, BackpackItem, PlayerEquipment, QuestReward, ItemType, Qual-
ity, and ItemMaterials. Its attributes are name, description, weight, is-
Craftable, cost, type, iconPath, quality.

e Weapon: This table describe the weapon used by the player to attack mon-
sters. Its relations are WeaponEffect, and WeaponType. Its attributes are
attackPoints, minLevel ToEquip, and type.

o WeaponEffect: This table describes the weapons that have effects on them.
These effects will affect the monster in different ways. Its relations are
Weapons, and Effects. Its attributes are weapon and effect.

e Consumable: This table describes the potions or poisons used in battle,
which will put an effect on the player or the monster. Its relations are
ConsumableType and Effects. Its attributes are numOfUses, type, effect.

18

Misc: This table describes other items that the player may sell or craft
with them. Its relations are MiscType and ItemMaterials. Its attribute is

type.

ItemMaterials: This table describes the material that the items are made
of. Its relations are Misc and Items. Its attributes are item, misc and
numOfMiscNeeded.

MiscType: This table describes the contains of the misc, like gold, ore,
and fur that the user may craft or sell for gold. Its relation is Misc. Its
attribute is type.

ConsumableType: This table describes the type of the item that the user
will use. Either a poison or potion, poison will decrease the monster’s
attributes, and potion will increase the player’s attributes. Its relation is
Consumable. Its attribute is type.

WeaponType: This table describes the types if the Weapons, like swords
or axes . Each weapon has a different attack point and stamina consump-
tion.Its relation is Weapons. Its attribute is type.

Quality: This table describes the quality of the item, the quality is defined
by set of names like fine, superior, legendary, or epic they describes the
attack point of a weapon. Its relation is Item. Its attribute is name.

ItemType: This table describes the type of the item, if the item is a
weapon, armor, consumable, or misc. Its realtion is Item. Its attribute is

type.

Armor: This table describes the armor that the player is wearing. An
armor will help decrease the incoming attacks from the monster. Its re-
lations are ArmorEffect, ArmorType, Slot, and Item. Its attributes are
defensePoints, minLevel ToEquip, type, and slot.

ArmorEffect: This table describes the effects on an armor. This effects
can increase the player’s ratings. Its relations are Armor and Effect. Its
attributes are armor and effect.

ArmorType: This table describes the type of a worn armor, where it’s
wearable like a helmet or a shield. Its relation is type. Its attribute is

type.

BackpackItem: This table describes the items inside a Backpack that the
player uses during their gameplay. Its relations are Backpack and Item.
Its attributes are backpacka and item.

BackPack: This table describes the items the player carries with them, like
weapons, armors, consumables, reward items from quests. Its relations are
BackPackItem and Character. Its attributes is maxWeight.

19

Effect: This table puts special effect on weapons and armors that ei-
ther will help the player gain special status or will put the enemy at a
temporary disadvantage. Its relations are Character, Skill, ArmorEffect,
WeaponEffect, and Consumable. Its attributes are name, description, and

type.

EffectType: This table describes the type of the added effects, like Bulff,
DeBuff, Damage, Restore. These effects works differently like buff adds
for an extanded time an advantage for the player. Its relation is Effect.
Its attribute is type.

Slot: This table assists with the equipped items, if the player has a weapon
which hand holds the weapon, or where is the armor worn. Its relations
are Armor, and PlayerEquipment. Its attribute is name.

PlayerEquipment: This table clarify the items that the player has equipped,
like weapons and armor to update the player’s ratings. Its relations are
Slot, Item, Character and PlayerEquipmentLog. Its attributes are player,
slot, and item.

PlayerEquipmentLog: This table keeps record of what the player is wear-
ing or worn, and also logs the effects applied on the player. Its relation is
PlayerEquipment. Its attributes are playerEquipment, and timestamp.

Skill: This table’s purpose is to map the player’s skills, which will help
them with surviving the game. Skills can help the user unlock new attacks,
craft new items, or increase carry weight in backpack. Its relations are
SkillType, CharacterClass, Effect, CharacterEffect, and CharacterSkill.
Its attributes are name, description, minLevelReq, class, type, and effect.

SkillType: This table describes the type of the skill effect used by the
player, if it’s an active or passive. Active means that the player uses them
in battle, Passive means it works in the background like increase max
weight. Its relation is Skill. Its attribute is type.

ActiveSkill: This table describes the active skills that the player has un-
locked. Active means that the player uses them in battle as weapons, each
skill has special affect on the monster. Its relation is Skill. Its attribute is
cost.

CharcterEffect: This table describes the effects that are added on the
player. The long term effects like restore attributes. Its relations are
Character, Effect, and CharacterEffectLog. Its attributes are character
and effect.

CharacterEffectLog: This table logs the added effects on the player. Its
relation is CharacterEffect. Its attributes are characterEffect and times-
tamp.

20

CharcterSkill: This table describes the skills that are added on the player.
The long term skills like increase carry weight. Its relations are Skill,
Character, and CharacterSkillLog. Its attributes are character and effect.

CharacterSkillLog: This table logs the added skills on the player. Its
relation is CharacterSkill. Its attributes are characterskill and timestamp.

QuestReward: This table are special items that given when completing a
quest, they often have rare effects or high ratings. Its relations are Item
and Quest. Its attributes are quest and item.

Attribute: This table describes certain ratings on the player. These ratings
are Buffs and DeBuffs that either help the player or not. Its relations are
AttributeModifer and CharacterAttributes. Its attribute is name.

AttributeModifer: This table is a detailed version of Attribute. It maps
the added attributes on the player. Its relation is Attribute. Its attributes
are attribute, value, and numOfTurns.

Character: This table’s purpose is to handle any character in the games
information from player to NCPs that interacts with the player. Its rela-
tions are PlayerEquipment, CharacterClass, Effect, CharacterTypr, Char-
acterEffect, CharcterSkill, CharacterAttribute, NonPlayer, PlayerQuest,
CharacterStats, and Backpack. Its attributes are name, type, level, class,
backpack, exp.

CharacterClass: This table describes each character is which kind of class,
like a mage, a warrior, a hunter. Its relations are Skill and Character. Its
attribute is class.

CharcterType: This table is a detailed type of a character like a trader, a
monster, a player. Its relations are character and Nonplayer. Its attribute
is type.

AttributeType: This table defines the attribute thate is being used, either
mana, health, or stamina. Its relations are Character and CharacterAt-
tribute. Its attribute is type.

CharacterAttribute: This table describes each attribute health, mana, and
stamina for each character. Its relations are Its relations are Character
and CharacterAttribute. Its attributes are type, attribute, character, and
value.

NonPlayer: This table stores all of the NPCs that are active inside the
game. The Non player characters interacts with the player in many ways
aggressively or not. Its relations are CharcterType, Character, Mob,
Trader, QuestGiver. Its attributes are type and IsPermanent.

21

Mob: This table describes the monsters inside the game. The monster’s
intent is to attack the player, and the player initiates combat with them.
Its relation is NonPlayer. Its attributes are isAggressive and modelPath.

Trader: This Table is the trader where the player goes to to buy or sell
items. Each trader has their own inventory where the player inspects
them and purchase items. Its relations are NonPlayer and TraderType.
Its attribute is type.

TraderType: This table defines the trader’s inventory, either it’s a black-
smith then purchase weapons and armors, a Treasure Hunter, then pur-
chase maps for special items. Its relation is Trader. Its attribute is type.

QuestGiver: This table is the NPC that gives teh quest to the player, the
player is to accept or refuse the quest from the questgiver. Its relations
are NonPlayer and Quest. Its attribute is quest.

PlayerQuest: This table is the relation of the quests that the player took
or in process of. Its relations are Character and Quest. Its attributes are
player and quest.

Quest: This table is the mission that the player takes from the quest-
giver. The quest could be fetching an item, killing monsters or crafting
certain items. Each quest then rewards the player with a special item.
Its relations are QuestType, PlayerQuest, QuestReward, QuestGiver, and
QuestObjective. Its attributes are name, type, description, status, and
rewardExp.

QuestType: This table defines each quest, either fetching items, killing
monsters or crafting items. Its relation is Quest. Its attribute is type.

CharacterStat: This table defines the stats that the player has unlocked
when leveling up. Its relation is Stat and Character. Its attribute is
character, stat, and value.

Stat: This table describes the ratings that the player has. Ratings are
some advantages that the player gets when leveling up. Advantages like
adding attack points to weapons, decrease incoming attacks. Its relations
are StatModifier and CharacterStat. Its attribute is name.

statmodifier: This table defines the stats that the player receives like
recover attributes, or damage monsters or player. Its relation is Stat, its
attributes are stat, value, and numOfTurns.

Objective: This table describes the objectives which are sub-quests that
the player completes. On the completion of an objective, another one
comes until the quest is finished. Its relations are ObjectiveType and
QuestObjective. Its attributes are name, type, and description.

22

e ObjectiveType: This table define the objective type, either fetching items,
killing monsters or crafting items. Its relation is Objective. Its attribute
is type.

e QuestObjectiveStatus: This table describes the status of an objective,
either completed, failed or in-process. Its relations are QuestObjectives
and Quests. Its attribute is status.

e QuestObjective: This table related between each quest and its objective.
Its relations Objective and Quest. Its attributes are quest, objective, and
status.

e QuestObjectiveLog: This table logs each quest and its objective for storage
and for future references. Its relation is QuestObjective. Its attributes are
questobjective and timestamp.

5 Component Design

The server uses the ORB algorithm [4] to extract the important features of the
sent frame, this will ensure if there was another frame sent of the same object,
the features would stay the same.

5.1 ORB Algorithm

The Oriented and Fast rotated Brief algorithm is a fast feature detector that
uses keypoint detection. First it finds the keypoints and then computes the
intensity weighted centroid of the patch with located corner at center. The
direction of the vector from this corner point to centroid gives the orientation.
These keypoints marks the important parts inside a frame, which is small in size
and more easy to compute when wanting to compare frames. This will ensure
that even if the orientation of a frame is changed, the important objects and
corners are effected.

5.2 Dataset

The dataset that has been stored inside the database are the object on which
the admin wants to superimpose the object. When the admin wants to add
a virtual object on a real object, the admin will capture the object in more
that one position, this will ensure the increased accuracy of the results the
more frames the more accuracy. The admin will then upload the frames to the
database for the server to process it and compare them with the new frame that
the user will then sends.

5.3 FLANN Algorithm

For the frame comparison, the server uses Brute Force algorithm called FLANN
that compares the features of the frames together by comparing the keypoints

23

that the ORB algorithm has extracted. The result of the brute force algorithm
gives a percentage if the frames are closer to each others, this percent is com-
pared with a threshold which then determines if the frames are identical or not.
If the frames are identical, then the server sends the object location on the frame
that will be superimposed on the mobile device, if there were a mismatch, then
the server stores the new frame along side with the geohash. That will ensure
if the same frame is sent gain, then the object will then appear.

Image 1 and Image 2

Fig 15: FLANN algorithm Matching Keypoints

In Figure 10, ORB algorithm has extracted keypoints inside each image, these
keypoints are important features that defines the image. FLANN algorithm
takes each keypoint and starts to apply a brute force algorithm to compare
each keypoint, and returns a list of common features. According to these com-
mon features, the algorithm decides whether the image is the same or not by
adding a threshold number that filters the bad percentage from the good one.

5.4 CNN Using Keras Library

In order to invoke object detection, the server should have some kind of intel-
ligence to contain the incoming dataset. In this scenario, we are using CNN
deep learning using keras library. The server takes a frame resize and transpose
to match current dataset, then the server pushes the processed data inside an
array to adjure into a classifier. The incoming frame will be compared with
the classifiers in the database, if the frame passes the threshold then the object
exists and the server will send the response to the database in order for the
mobile to superimpose the virtual object.

The merge of the core with the game has been implemented. The core is
used to apply virtual objects by using geolocation for general filtration, which
means that the geolocation helps pinpoint certain objects inside the geohash
that the user is standing inside. The object recognition is used to superimpose
the virtual object on the real object, these objects can be several things like
quests NPCs, Monsters or items. The user would go to a NPC that will give
them a quest, accordingly to the quest, the user will go to the given location to
fetch an item by fighting a monster, upon defeat the user will acquire the item
and complete the quest.

24

6 Human Interface Design

6.1 Overview of User Interface

The Wanderer works on two different ends, the admin end and the user end.

e The admin ends focus around adding a virtual object to the user. The
admin will go to the place where the object will be placed, then capture a
few frames, the more frames the more accurate the reading will be. The
admin will then go to the upload place, then the user will upload the
captured frame along with the geohash using google maps, the name of
the object, and the purpose of the object, like a monster or a questgiver.
These information will be uploaded to Firebase database for storage, and
for the server to process them.

e The user side will contain several menus they are as follows:

— Shop menu: The shop menu will have the trader’s inventory. Each
trader has an inventory containing items for the user to use. These
items are weapons, armor, potions, or poisons to use inside the com-
bat.

— Combat menu: The combat menu contains the combat mechanism.
This will interacting with the monster the user faced, either by at-
tacking using weapons or magic, defending incoming attacks, using
a potion or poison, or fleeing from the monster.

— Quest menu: This menu contains all the user’s quest; either current
quests, completed quests or active quests. Also having the informa-
tion of each quest as well as teh objectives inside each quest.

— Map menu: This is a map that contains nearby shops or quests for
the user to go to these locations to interact with them.

6.2 Screen Images
"-ll.l-.l.l-l-ll‘ il

11 k)

L}
e T T

Fig 16: The Combat Menu

25

w YA
S/ o L/ »
T, s 5? ;j g X p
% 3 i
L, -F g 7 = =
g g J
‘ 7 3
.‘;‘,Dv) BY]
o) . Y
28M8 G gl
s 0 Lo
o o
g s ol £
Lig s8I ol ; j
thary El Tahrir o =il : T
3 % 3 3 -
X o 5? 3 Il
3 j : (;, &/ o Spbe..|
w‘j J =;:,- :? Q

Fig 17: The Maps Menu

Shop (Buy)

Iron Sword 45
Iron Helmet 5
Weak Poison 0.5
L 4

Iron Sword

Weapon (Sward) Kermal

Attack Weight Lost

0 45 al

Fig 18: The Shop Menu

Fig 19: The Quest Giver For The User To Interact With It

26

6.3 Screen Objects and Actions

Weapon Only

Use Skill

Fig 20: The Attack Menu

Weapon Only

Fig 21: The Weapon Button

Initiating attack on a monster will enter into a selection, either choosing to
attack with a weapon which will consume from the stamina bar, and according
to the equipped weapon the attack point will decrease the monster’s health.

27

P

Fig 22: The Sills Button

The player can choose skills, if the player have skills, it will consume from
the mana bar. The skills are added dynamically according to the unlocked skills

Weak Mana Potion

Weak Health Potion

Fig 23: The Potion Menu

The potion menu will be used for the user to increase his attributes (health,
mana, and stamina). If the player has consumables then it will appear dynam-
ically from the player’s inventory. The potion after selection will cost a turn,
meaning the monster will attack you. There are other potions like increase de-
fense rating, attack points, critical points,etc.

28

7 Requirements Matrix

Required Write Image. The Server would read an image from the local file system throvgh its path. Write multiple images of different formats
Required Get Object Location In Image. The server would find the obj ect location inside an image using featur e matching. i ¢ in different it i {

Required Stere Image Information in DB e, Storing different types of info pertaining to some images
Required Extract Image Features And Key points e Server would exract 3 51 Extract Features and Key Points of several images
Required Authenticate User Theserver will sign in o) | T and passwords and try

s e B some $QLinjections and see the result

3.3.4(Notification) Sending many numberof requests

Querying for objects in different environments with different lighting
options

il listen on

Required Listen O Database For Requests

new requests.

The server will query for objects in a specific image from

Query For Objects In Image. 23

firebase database

The server would send the otject information tofirebase.
Required Store Object Information n Database. 23 Send different types of info pertainingto some images

database

The server would delete a request from firebase database after

Required Delete Request. 23 i requests,

processing it.

The Mobile would send a requESt o the sTver to get objects

Required Send RequestCheck Location sending multiple requests usingdifferent speeds of connection

Encode Geohash The Mobile would hash GPS coordinates toa geohash. 3112 i ifthe

Required Open Camera Start the mobile's camera inviden mode. Open the Camera multiple times and if itworks correctly
Required Display Menu Themobilewould dispiay a menuto the user i menusand see if they work as exp:

({ LlpdaleMel\u)

29

" " . 3.3.4.6 i -
New functionality Hide Menu Themobilewould hide a men from theuser. - (i) Hide different menus and see if they work as expected

Required Get Compass Hesding Themabil ewould read the compass senser. 2121 ‘Get different reading of compass and see f they correspond correctly
Required Store ImageA sync e B Store different kind ifii different si;

speads of connections

35(Fg12) ifthey

‘The Admin would get the orienttion of themobile device.

Requirad Start Coroutine Themobilewould start a coroutine.

tion of different ifthey
cormespond correctly

Required GetInformation From theGyroscope

from thesensor.

di i d

nge

Required Get Information From the accelerometer 2112 if they

correspond correctly

from thesensor.

New functionality

The player can defend itselfagains: the enemies attacks. Defend against multiple mobs and see ifit works as intended

The player can un equip an item to use like a wespon or an

Un-equip differenttypes of items and see f it works as intended

Iftheplayer finishes or failed a mission, therewill be analarm

Complete some missions and see if itnotifies the player comectly
for them.

Fig 24: Requirements Matrix

8 References

[1] Tateno, Masaru, et al. New game software (Pokmon Go) may help youth with
severe social withdrawal, hikikomori. Psychiatry research 246 (2016): 848849.

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, Rich
feature hierarchies for accurate object detection and semantic segmentation, in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2014, pp. 580587.

30

[3] ThomasSandholmandHangUng, Real-time,locationaware collaborative lter-
ing of web content, in Proceedings of the 2011 Workshop on Context-awareness
in Retrieval and Recommendation. ACM, 2011, pp.14 18.

[4] Frazer K Noble, Comparison of opencvs feature detectors and feature

matchers, in Mechatronics and Machine Vision in Practice (M2VIP), 2016 23rd
International Conference on. IEEE, 2016, pp. 16.

31

