
Software Design Document for Automated

Detection of White Blood Cells Cancer Diseases

Rowan Omar, Hend Mohamed, Nermeen El saeed, Ali Essam

June 22, 2018

1 Introduction

1.1 Purpose

The main purpose of this software design document to describe the architec-
ture and system design of our system Cancer chaser. Our system is a desktop
application that mainly detects and classifies various white blood cells cancer
diseases. We also provide a fulfilled description about each single stage input,
output and algorithms used in this stage, along with a full illustration for each
stage requirements and development process. It illustrates the system compo-
nents and how they interacts with each other.

1.2 Scope

This document targets the hematologist experts that would use the Cancer
Chaser Application to help them discriminating between different types of white
blood cells cancer diseases (Myeloma, Leukemia ALL and AML) which will save
much more time rather than manual inspection. Our proposed project is an
automated system to diagnose such diseases. It is a recognition system applied
on acquired microscopic images then performs pre-processing, segmentation,
feature extraction and classification. The system has the ability of learning
from misclassified tests to enhance the future accuracy of the system.

1.3 Overview

This SDD document includes 8 main sections. The first section is an introduc-
tion to our system including our scope and purpose. The second section is the
system overview illustrating our system workflow. The third section includes
the architecture design of the system, activity diagram, sequence diagram, state
diagram and class diagram. The fourth section illustrates the database design
in details. The fifth section illustrates our component design including the used
algorithms and techniques. The sixth section illustrates the human interface
design and describes how the user will interact with our system. The seventh

1

section is the requirement matrix that shows which components satisfy each
of the functional requirements. The rest of the sections are appendices and
references.

1.4 Definitions and Acronyms

Term Definition

WBC
White blood cells are the cells of the immune system that are involved in protecting
the body against both infectious disease and foreign invaders.

Hematologist
A hematologist is a specialist in hematology, the science or study of blood,
blood-forming organs and blood diseases.

UI User interface is the space where interactions between humans and machines occur.

GLCM
A statistical method of examining texture that considers the spatial relationship
of pixels is the gray-level co-occurrence matrix.

YCBCR
is a family of color spaces used as a part of the color image pipeline in video and
digital photography systems. Y is the luminance component and
CB and CR are the blue-difference and red-difference chroma components.

AML
Acute myeloid leukemia, is a cancer of the myeloid line of blood cells, characterized
by the rapid growth of abnormal cells that build up in the bone
marrow and blood and interfere with normal blood cells.

ALL
Acute lymphoblastic leukemia is a type of cancer in which the bone marrow makes
too many immature lymphocytes (a type of white blood cell).

Myeloma
is a cancer arising from plasma cells, a type of white blood cell which is made in
the bone marrow.

ROI Region of interest.

MVC Model-View- Controller.

SGD Stochastic Gradient Descent.

SVM Support Vector Machine.

CNN Convolutional Neural Network.

RF Random Forest.

NB Nave Bayes.

2 System Overview

In Cancer Chaser application we will implement a non-existing system with
a high accuracy, speed differentiation and detection of various blood cancer
diseases. Cancer Chaser goes through three essential stages. Firstly, upload-
ing microscopic image for blood. Secondly, testing the image after applying
different algorithms. Finally, classifying whether the disease is (AML, ALL,
Myeloma). The application workflow is illustrated below in figure (1). Starting
with pre-processing which will be performed on the uploaded image. Then, seg-
mentation that converts images to YCBCR color space and constructs Gaussian
distribution of CB and CR values. After that is feature extraction, mainly ex-
tracting 35 features of 4 types of features Morphologic, statistical, texture and

2

size ratio between nucleus and the cytoplasm. Final step is classification using
different algorithms to train and test the dataset. The system stores medical
records to save patients medical history. It also has the ability of learning from
misclassified tests to enhance the future accuracy of the system.

Figure 1: System Overview

3

3 System Architecture

3.1 Architectural Design

Figure 2: Architectural Design

4

3.1.1 View

It is responsible for the presentation of data and representing the User Interface
(UI). We have two different interfaces one is responsible for Admin operations
and the other one is responsible for representing the core part including crop-
ping, diagnosis and classification.

3.1.2 Controller

It is responsible for binding the view and model. The interactions and requests
made within the view are taken and sent to the database to fetch data with
the use of models then it forward data to the view again to be shown. Some
of the controllers we are having; Admin Controller that is responsible for han-
dling interactions made within Admin Views, User Controller that is responsible
for handling interactions made by the hematologist, Cropping, Diagnosis and
Classification Controllers are responsible for core functionality and handling its
interactions and finally the Notification Controller that is responsible for sending
notifications to the doctor when the results are shown.

3.1.3 Model

Core
Admin, Hematologist and Patient are models handling information and main
functions of users involved in the system.
Disease and Disease type are models handling information of the diseases we
are considering and their sub-types.
Statistical, Morphological, Texture and Size Ratio Features are models handling
information about each feature type that we extract from the test image.
DB Handler is the model responsible for inserting and fetching data from the
database.

Algorithm
Random Forest: It starts with a decision tree as a machine learning technique.
It models the data and draws multiple curves and then chooses the strongest
curve which contains the greater number of curves assembled together. The
data starts to move through different sub branches of the tree until it reaches a
decision.

Libraries
Mahotas: This is the library containing on of our features which is texture.
Scikit-learn: This is the library containing the classifier we are using which is
RF.
PIL: This library is for managing the images in the UI.
Opencv: This is our core library which handles the images, their color spaces
and many operations on the image as calculating mean and mode.
Numpy: This library is responsible for handling arrays.

5

3.2 Decomposition Description

3.2.1 Class Diagram

Figure 3: Class Diagram

Class name: User
Type: Concrete.
List of super classes: N/A.
List of sub classes: Hematologist, Admin.
Purpose: Class to encapsulate different user-types with their common attributes.
Collaboration:
This class aggregates class usertype.
Assists class LoginView.
Assisted by class SingleTon.
Extended by both classes, User and Admin.
Attributes: Id, Full name, username, password, Gender, Mobile Number, Ad-
dress, age, user type object, Email.
Operations: SignIn(String username, String password).

Class name: UserType
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To allow scalability to add new user types.
Collaboration: This class is aggregated by class User, UserTypeAttribute and
Report.
Attributes: id, TypeName, options[].
Operations: None.

Class name: UserTypeOptions

6

Type: Concrete.
List of super classes: N/A.
List of sub classes: None.
Purpose: Class to contain possible options for all user types.
Collaboration: This class is aggregated by class UserTypeAttribute.
Attributes: Id, optionname, datatype.
Operations: None.

Class name: UserTypeAttribute
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To represent what options each usertype has.
Collaboration: This class aggregates UserType, UserTypeOptions, aggregated
by class UserTypeAttrValue.
Attributes: Id, UserType object, UserTypeOptions object.
Operations: None.

Class name: UserTypeAttrValue
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To contains the actual values of user-type options attributes.
Collaboration: This class aggregates class UserTypeAttribute.
Attributes: id, UserTypeAttribute Object, value.
Operations: None

Class name: Admin
Type: concrete.
List of super classes: User.
List of sub classes: None.
Purpose: To represent the admin.
Collaboration:
Extends class User.
Assisted by class Hematologist.
Associates classes AdminView, ManipulateDoctorsView.
Implements Both interfaces IReport and ISearch.
implements Interfaces (ISearch and IReport).
Attributes: Id,SerialNumber.
Operations:
AddDoctor(fn, Un, Pass, Email, Age, add, gender, Type).
EditDoctor (Hematologist H).
DeleteDoctor (Hematologist H).
Search (String Tablename, String Criteria, String whereClause).
HashPassword (String Password).
ListDoctors ().

7

ViewReport ().
CreateReport ().

Class name: Hematologist.
Type: concrete.
List of super classes: User.
List of sub classes: None.
Purpose: To represent the Hematologist Expert.
Collaboration:
This class extends class User.
associates class Admin.
Aggregates class Patientinfo.
Associates class AddPatientView, ManipulatePatientsView, PatientResultView.
Implements interfaces ISearch, IReport.
Assisted by class SingleTon.
Attributes: Id ,Specialization, Patientinfo[].
Operations:
Search (Tablename, Criteria, whereClause).
UploadImage ().
GetFirstPoint().
GetSecondPoint().
SaveResults(String Disease, String DocName, Image img).
ReClassify (String Disease).
EditPatient (Patientinfo p), DeletePatient (Patientinfo p).
ListPatients ().
AddPatient (Patientinfo p).
ViewReport ().
CreateReport ().

Class name: ISearch
Type: Interface.
List of super classes: None.
List of sub classes: None.
Purpose: To allow searching with different Criteria.
Collaboration:
Classes (Admin, Hematologist) implements this class.
Attributes: None.
Operations: Search (String TableName, String Criteria).

Class name: IReport
Type: Interface.
List of super classes: None.
List of sub classes: None.
Purpose: To allow creating and viewing reports.
Collaboration:
classes (Admin, Hematologist) implements this class.

8

this classis assisted by class Report.
Attributes: None.
Operations:
CreateReport (Report R).
ViewReport (Report R).

Class name: Feature
Type: Abstract.
List of super classes: None.
List of sub classes: class AdditionalFeatures.
Purpose: To contain the basic features of the Image to be wrapped with addi-
tional features layers.
Collaboration: This class is inherited by class AdditionalFeatures.
Attributes: Id , Newfeatures [].
Operations: PrepareFeaturesFor-SVM().

Class name: AdditionalFeatures.
Type: concrete.
List of super classes: Feature.
List of sub classes: class TextureFeature, StatisticalFeature, MorphologicalFea-
ture and Size Ratio.
Purpose: to append to the basic features.
Collaboration:
This class is inherited by classes TextureFeature, StatisticalFeature, Morpho-
logicalFeature and Size Ratio.
inherits class Feature.
Attributes: Id ,Newfeatures [].
Operations: ExtractL1L2M5Features(Image img), ExtractL3M2M3MyelomaFeatures(Image
img),GetFeatures(), GetFeaturesBasedOnLabels(ArrayList¡String¿ Labels)

Class name: TextureFeature.
Type: concrete.
List of super classes: AdditionalFeatures.
List of sub classes: None.
Purpose: To extract the texture features of the Image.
Collaboration: This class inherits class AdditionalFeatures.
Attributes: Id , New-Texture-Features [].
Operations: Exctract-Features(), PrepareFeaturesFor-SVM().

Class name: MorphologicalFeatures.
Type: concrete.
List of super classes: AdditionalFeatures.
List of sub classes: None.
Purpose: extract the morphological features of the Image.
Collaboration: This class inherits class AdditionalFeatures.
Attributes: Id ,New-Gradient-Features [].

9

Operations: Exctract-Features(), PrepareFeaturesFor-SVM().

Class name: IClassify
Type: Interface.
List of super classes: None.
List of sub classes: None.
Purpose: To allow classification with different classifiers strategies.
Collaboration: Class SVM and RNN implements this class.
Attributes: None.
Operations: Classify(Parameters []).

Class name: StatisticalFeature.
Type: concrete.
List of super classes: AdditionalFeatures.
List of sub classes: None.
Purpose: extract the statistical features of the Image.
Collaboration: This class inherits class AdditionalFeatures.
Attributes: Id ,New-Gradient-Features [].
Operations: Exctract-Features(), PrepareFeaturesFor-SVM().

Class name: SizeRatioFeature.
Type: concrete.
List of super classes: AdditionalFeatures.
List of sub classes: None.
Purpose: extract the size ratio features of the Image.
Collaboration: This class inherits class AdditionalFeatures.
Attributes: Id ,New-Gradient-Features [].
Operations: Exctract-Features(), PrepareFeaturesFor-SVM().

Class name: IClassify
Type: Interface.
List of super classes: None.
List of sub classes: None.
Purpose: To allow classification with different classifiers strategies.
Collaboration: Class SVM and RNN implements this class.
Attributes: None.
Operations: Classify(Parameters []).

Class name: CNN.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To allow classification with CNN classifier.
Collaboration: This class implements class IClassify, assisted by class Features.
Attributes: None.
Operations: Classify(Parameters []).

10

Class name: RandomForest.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To allow classification with Random forest classifier.
Collaboration: This class implements class IClassify, assisted by class Features.
Attributes: None.
Operations: Classify(Parameters []), FitAndPredict(ArrayList¡Double, String¿
featuresAndLabels, ArrayList¡Double¿ TestFeatures).
Class name: Image.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To contain the image.
Collaboration: This class is aggregated by classes(preprocessing ,segmentation,
Result).
Attributes: int Id , int Width, int Height, String Type, int Channels, String
Path, int MaxPixel.
Operations: None.

Class name: Preprocessing.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To convert the color space and do some processing on the image before
segmentation.
Collaboration: This class aggregates class Image, aggregated by class segmen-
tation.
Attributes: Image img.
Operations: Cvt-To-YCBCR(), Cvt-To-GRAY().

Class name: Segmentation.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: To remark (segment) the parts of the doctors interest in the image
(cells).
Collaboration:
This class aggregates class Image, preprocessing.
Associates class ClassificationView.
Attributes: Id, SegmentedIamgeObject, PreprocessingObject.
Operations:
GenerateGuassianDistribution (Image YcbcrImage).
Laplacian ().
Normalize (int MaxPixel).
AdaptiveThreshold (Image original).

11

GetConnectedComponents(Image thresholded).
ApplyMorphologicalOperations (Image im).

Class name: Disease.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to identify different diseases.
Collaboration: This class aggregates class DiseaseSubType.
Attributes: int Id, DiseaseSubTypeObject, String Typename.
Operations: None.

Class name: DiseaseSubType.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to identify different subtypes of diseases.
Collaboration: This class is aggregated by class Disease, Result.
Attributes: Id, name.
Operations: None.

Class name: Result.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the final result doctors received from the classification.
Collaboration: This class aggregates classes DiseaseSubType, Image.
Attributes: Id, DiseaseSubTypeObject, Image im, String Docname.
Operations: None.

Class name: Report.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to allow multiple reports in the system.
Collaboration: this class aggregates class userType, aggregated by class GUI-
views, associates class IReport.
Attributes: int Id, String reportname, usertypeiD, String SQL.
Operations: None.

Class name: CroppingView.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the cropping screen.
Collaboration:

12

this class aggregates class CroppingController.
Assisted by class Hematologist.
Implements interface IDestroy.
Attributes:
Image DiagnosisImage.
Button UploadImage, CropImage, ConfirmCropping.
Canvas canvas.
CroppingController cc.
Operations:
UploadImageView ().
PlaceOnCanvas (String filename).
GetReadyForCroppingImage ().
GetFirstPoint(double x, double y).
GetSecondPoint(double x, double y).
PerformCropping().

Class name: CroppingController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Cropping view.
Collaboration:
this class aggregated by CroppingView.
Attributes: None.
Operations:
UploadImage ().
GetFirstPoint (double x, double y).
GetSecondPoint (double x, double y).

Class name: LoginView.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Login screen.
Collaboration:
this class aggregates class LoginController.
Assisted by class User.
Implements interface IDestroy.
Attributes:
Entry Username, Password.
Label username, password.
Button Signin.
LoginController lc.
Operations:
ControlUserLogin (String username, String pass).

13

Class name: LoginController.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Login view.
Collaboration:
this class aggregated by LoginView.
Attributes: None.
Operations:
ControlUserLogin (String username, String pass).

Class name: ClassificationView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Classification screen.
Collaboration:
this class aggregates class ClassificationController.
Assisted by class User, Svm, CNN, RandomForest, Segmentation, Feature.
Implements interface IDestroy.
Attributes:
ClassificationController cn.
Image croppedImage
Button Classify.
Button Back.
Canvas canvas.
Operations:
BackButton ().
TheWholeFlow().
GetApproach().
ApplySegmentation(Image TestImage).
ExtractFeaturesForSpecificApproach(String Approach, Image segmented)
Classify(ArrayList¡double¿ AppendedFeatures, String approach, Image test)

Class name: ClassificationController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Classification view.
Collaboration:
this class aggregated by ClassificationView.
Attributes: None.
Operations:
SegmentationProcess (String method, Image croppedImage).
CNNCLassifier (Image im).
RFClassifier (String flow, Image im).

14

GetDecorativeFeatures (Image im).
GetDecorative-L3M2M3MyelomaFeatures(Image im).
GetDecorative-L1L2M5Features(Image im).

Class name: ReClassificationView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the ReClassification screen.
Collaboration:
this class aggregates class ReClassificationController.
Assisted by class Hematologist.
Implements interface IDestroy.
Attributes:
ReClassificationController cn.
Label Disease, patientName, DoctorName.
Button Reclassify, Save Result, Back.
DropDown Diseases.
Canvas canvas.
Image CroppedImage.
Operations:
ReClassifyFunction (String Disease).
ConfirmReClassifyFunction ().
SaveResult (Result r).

Class name: ReClassificationController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the ReClassification view.
Collaboration:
this class aggregated by ClassificationView.
Attributes: None.
Operations:
ReClassify (String Disease).
SaveResult (Result r).

Class name: AddPatientinfoiew
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the AddPatientinfo screen.
Collaboration:
this class aggregates class AddPatientinfoController.
Assisted by class Hematologist.
Implements interface IDestroy.

15

Attributes:
AddPatientinfoController APC.
Entry patientName, Age, Gender, MedicalId.
Operations:
AddPatient (Patientinfo p)

Class name: AddPatientinfoController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Add-Patient-info view.
Collaboration:
this class aggregated by AddPatientinfoView.
Attributes: None.
Operations:
AddPatient (Patientinfo p)

Class name: ManipulatePatientsView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Manipulate-Patients screen.
Collaboration:
this class aggregates class ManipulatePatientsController.
Assisted by class Hematologist.
Implements interfaces IDestroy.
Attributes:
ManipulatePatientsController lp.
Button Edit, Delete, Search.
DropDown AllPatients.
Operations:
EditPatient (Patientinfo p).
DeletePatient (Patientinfo p).
Search (String Medica-lId).

Class name: ManipulatePatientsController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the ManipulatePatients view.
Collaboration:
this class aggregated by ManipulatePatientsView.
Attributes: None.
Operations:
EditPatient (Patientinfo p).
DeletePatient (Patientinfo p).

16

Search (String Medica-lId).

Class name: PatientResultsView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Patient-Results screen.
Collaboration:
this class aggregates class PatientResultsController.
Assisted by class Hematologist.
Implements interfaces IDestroy.
Attributes:
PatientResultsController ls.
Button Search.
Entry medicalId.
Operations:
DeleteResult (Result r).
Search (String Medicald).

Class name: PatientResultsController.
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Patient-Results view.
Collaboration:
this class aggregated by PatientResultsView.
Attributes: None.
Operations:
DeleteResult (Result r).
Search (String Medicald).

Class name: ManipulateDoctorsView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Manipulate-Doctors screen.
Collaboration:
this class aggregates class ManipulateDoctorsController.
Assisted by class Admin.
Implements interfaces IDestroy.
Attributes:
ManipulateDoctorsController ld.
Button Edit, Delete, Search.
DropDown AllDoctors.
Operations:
EditDoctor (Hematologist H).

17

DeleteDoctor (Hematologist H).
Search (String Username).

Class name: ManipulateDoctorsController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Manipulate view.
Collaboration:
this class aggregated by ManipulateDoctorsView.
Attributes: None.
Operations:
EditDoctor (Hematologist H).
DeleteDoctor (Hematologist H).
Search (String Username).

Class name: IEdit
Type: interface.
List of super classes: None.
List of sub classes: None.
Purpose: to provide the Editing functionality in different subclasses.
Collaboration:
this class implemented by Classes Hematologist and Admin.
Attributes: None.
Operations:
Edit (*argv)

Class name: IDelete
Type: interface.
List of super classes: None.
List of sub classes: None.
Purpose: to provide the Deleting functionality in different subclasses.
Collaboration:
this class implemented by Classes Hematologist and Admin.
Attributes: None.
Operations:
Delete (*argv).

Class name: SingleTon
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to minimize number of connections.
Collaboration:
this class assists classes itself, User, AdditionalFeatures.
Attributes: None.

18

Operations:
getInstance ().

Class name: IDestroy
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to Switch between views.
Collaboration:
all views classes implements this class.
Attributes: None.
Operations:
DestroyPage ().

Class name: HematologistView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Hematologist profile screen.
Collaboration:
This class aggregates class HematologistController.
Assisted by class Hematologist.
Implements interface IDestroy.
Attributes:
Image Tk Profile photo
Entry username, password, Address.
Button Edit, AddPatient, UploadImage, ListPatients, SearchResult.
HematologistController HC.
Operations:
AddPatient ().
SearchResult ().
ListPatients ().
UploadImgae ().
EditProfile (Hematologist h).

Class name: HematologistController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Hematologist profile view.
Collaboration:
this class aggregated by HematologistView.
Attributes: None.
Operations:
AddPatient ().
SearchResult ().

19

ListPatients ().
UploadImgae ().
EditProfile (Hematologist h).

Class name: AdminView
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to represent the Admin screen.
Collaboration:
this class aggregates class AdminController.
Assisted by class Admin.
Implements interface IDestroy.

Attributes:
Button AddDoctor.
AdminController AC.
Operations:
AddDoctor ().
ManipulateDoctor ().
Back ().

Class name: AdminController
Type: concrete.
List of super classes: None.
List of sub classes: None.
Purpose: to control the Admin view.
Collaboration:
this class aggregated by LoginView.
Attributes: None.
Operations:
AddDoctor ().
ListDoctors ().

20

3.2.2 Activity Diagram

Figure 4: Activity Diagram

21

3.2.3 State Diagram

Figure 5: State Diagram

3.2.4 Sequence Diagram

Figure 6: Disease Classification Sequence diagram

22

Figure 7: Classifier Training Sequence diagram

Figure 8: Feature Extraction Sequence diagram

3.3 Design Rationale

As mentioned previously, we have used Model-View-Controller (MVC) as our
architectural model because it helped us separate the functionality and data of
our system from the presentation. So, we can easily make modifications, re-use

23

and optimize functionality part as it is our core. Also, as we are developing
software for medical use which is very sensitive when dealing with data and
results so this part should be developed in very efficient and reliable way.
We had many alternatives concerning core algorithm so we have tested them
and were able to choose the best that fits our problem. Those alternatives are
SVM, CNN, RF, NB and SGD.

SVM: Linear SVM is given a set of train data which belong to a certain class
to find an optimal separating line. It tries to maximize the distance between
each class to avoid misclassification. Then a test data are given to be classified
to one of the classes formed before[5].

CNN: Belongs to deep learning class, designed to require minimal prepro-
cessing. It consists of two layers which are input and output as well as multiple
hidden layers. These layers consist of convolutional layers, pooling layers, fully
connected layers and normalization layers.

RF: It starts with a decision tree as a machine learning technique. It mod-
els the data and draws multiple curves and then chooses the strongest curve
which contains the greater number of curves assembled together. The data
starts to move through different sub branches of the tree until it reaches a de-
cision[2,12,13].

NB: It works on conditional probability. It calculates the probability of the
input relative to some decisions that was previously taken. It is well suited when
the input has large number of dimensions[6].

SGD: Supports multi-class classification. In learning process the classifier
run a binary classifier discriminating between one of the classes and the rest of
them. At testing, it calculates the confidence score of the input with respect to
all the classes and then chooses the class with the highest confidence.

We have chosen RF as our classifier because it was the best one that was
able to differentiate between different types and the one which has given us
the highest accuracy. Also, the architecture that this classifier was based on
matches our problem as we have three parent disease classes and each one has
many sub-classes as their sub-types.

24

4 Data Design

4.1 Data Description

Figure 9: Databse

User: This table contains id, email, fullname, gender, age, username, pass-
word and it also contains UserType IdUserType because we have two usertypes
(Admin, Hematologist) and each type have different privileges. In addition,
address id is a foreign key from table Address.
UserType: This table contains id, name to be able to differ between the different
users.
UserTypeOptions: This table contains id, name of the option and its datatype
in which each user can have a couple of options.
UserTypeAttr: In this table each usertype have different options. So, we get
the UserTypeOptions id, UserType IdUserType to know the different options
for each usertype.
UserTypeAttrValue: This table contains id, Value of each option specified by
UserTypeAttr id and userid that is foreign key from table User.
Address: This table contains id, apartment, building, region and city id that
indicates which city does the user lives in and it’s a foreign key from table City.
City: This table contains id, city name and country id which is foreign key from
table Country.
Country: This table contains id and country name.
Report: In this table the doctor may need to save an SQL statement to view
specific data. This table contains an id, name of the report, the SQLStatement
itself and Usertype id because each type have different reports to view.
Feature: This table contains id, name of the feature.
FeatureElement: This table contains id, Feature id that refers to the feature
itself and the DiseaseSubType id which is the disease for this feature.
FeatureSubElement: This table contains id, FeatureElement id and the value.
So, each Feature Element record will be mapped to various Feature Sub Ele-

25

ments.
DiseaseType: This table contains id, name of the disease whether its AML,
ALL, Myeloma.
DiseaseSubType: This table contains the Subtypes of the diseases mentioned
in the table (Disease Type). So, it contains id, name of the subtype and the
DiseaseType id of the disease itself.
Result: This table contains the results for each patient. It contains id, Pati-
entInfo id, DiseaseSubType id, User id that refers to the Hematologist id and
the sample Image itself.
Models: This table contains id, ModelName which is the saved classifier model,
SelectedFeatures gained by using genetic algorithm, indices of the selected fea-
tures and nb classes are the number of trained classes in this model.
DiseaseSubTypeModels: This table shows that each model contains many dis-
easesubtypes. Each diseasesubtype contains a label. So, this table contains id,
modelID foreign key from table Model, diseasesubtypeID foreign key from Dis-
easeSubType table and the label.
PatientInfo: This table contains id, PatientFullName, Age, Gender, MedicalID
and address id that is foreign key from Address table.

4.2 Data Dictionary

Security is achieved by hashing the passwords whereas Class Admin include a
function called HashPassword (String pass).

Reliability is achieved by using singleton design pattern.

Extensibility is achieved by using strategy design pattern to switch between
classifiers, interface IClassify encapsulate the classification behavior and classes
Random Forest, CNN implement it. In addition, decorative design pattern
achieves extensibility by appending the features vector dynamically.

Maintainability is achieved by using Entity Attribute Value Model (EAV) in the
user classes (User, UserType, UserTypeOptions, UsertypeAttr, UserTypeAttr-
Value). The system is able to host different type of users with different options
for each type.

26

5 Component Design

Figure 10: Flowchart of our system approach

5.1 Pre-processing

In this phase we prepare the blood sample image for the segmentation process by
converting our input images from RGB color space to YCbCr space. Our choice
to the YCBCR color space (Y: Luminance, CB: Blue Value, CR: Red Value)
was due to the reddish and bluish colors of our blood samples. After converting

27

images to YCbCr space, the extracted Cb and Cr coefficients are used for cell
segmentation process. Sample input image before and after conversion is shown
in fig. 11.

Figure 11: Input images before and after Preprocessing (a)RGB Color Space ,
(b)YCBCR Color Space

5.2 Segmentation

5.2.1 Cell Segmentation

The purpose of this phase is to segment the whole cell from the relative back-
ground as shown in Fig.12. The extracted Cb and Cr coefficients from our
training images during preprocessing phase are now used to build a Gaussian
Distribution as shown in equation ——.

—–add the gaussian distribution model here please —–
This Gaussian distribution is applied on test images in the YCbCr space to

extract our valuable pixels that are most probable included to our regions of
interest ROI. After applying our defined distribution, normalization is applied
followed by adaptive threshold algorithm.

Figure 12: (a) Original RGB image before segmentation, (b)After Segmentation

5.2.2 Nucleus & Cytoplasm Segmentation

The result from cell segmentation is a mask containing only the cell. Color
detection is applied on the cell mask with specified range of colors to segment

28

nucleus mask. By simple pixel to pixel subtraction of these two masks we can
easily extract an accurate mask for the cytoplasm as shown in Fig.7

Figure 13: Nucleus and Cytoplasm Segmentation

5.3 Feature Extraction

The system mainly extracts 29 features of 4 types of features Morphological,
statistical, texture and size ratio between nucleus and the cytoplasm. The
differentiation between multiple types of both ALL, AML and Myeloma required
different types of features to be considered as they are visually similar. Those
features are morphological, statistical, texture and size ratio. We have different
set of features calculated according to the approach chosen by the doctor. The
first approach includes L1, L2, M5 as a set while the other set includes L3, M2,
M3 and Myeloma, so based on the doctors decision one of the approaches will

29

be followed. We considered ratio features because they are invariant to scaling.
Now we will discuss each feature in brief.

5.3.1 Morphological Features

These features represent shape of the cell and its dimensions.

Area to perimeter ratio It is the ratio between the actual number of pixels
in the Region of interest and the distance between each adjoining pair of pixels
around the border of the ROI.

AreaToPerimeterRatio =
Area

Perimeter
(1)

Figure 14: Region of interest

Circularity This feature measures the complexity of the perimeter of the
circular object.

Circularity =
Perimeter

(4 ∗Area ∗ pi)
(2)

Elongation It is the ratio between length of the smallest rectangle containing
the ROI and width of the smallest rectangle containing the ROI as shown in
Fig. 15. It is also known as the growth in one direction of the ROI.

Elongation =
LSR

WSR
(3)

where LSR is the length of the smallest rectangle containing the ROI and
WSR is the width of the smallest rectangle containing the ROI

30

Figure 15: Smallest rectangle containing the ROI

Major to minor axis length ratio It is the ratio between the major axis of
the ellipse containing the ROI and the minor axis of the ellipse containing the
ROI as shown in Fig.16

MajorToMinorAxisLengthRatio =
MajorAxisLength

MinorAxisLength
(4)

Figure 16: Ellipse containing the ROI

Extent It is the proportion of ROI area to the area of its bounding rectangle.

Extent =
Area

(Width ∗ Length)
(5)

Solidity It is the proportion of ROI area to area of its convex hull.

Solidity =
Area

Convexarea
(6)

31

5.3.2 Statistical Features

These features also concern cell shape information but from different perspec-
tive. The calculated features are the following

Mode It is defined as most frequent value of the pixels intensity of the ROI.

Mean It is the average value of the pixels intensity of the ROI.

Standard deviation Standard deviation of the pixels intensity of the ROI.

Variance Variance value of the pixels intensity of the ROI.

Sum Sum of the pixels intensity of the ROI.

Gradient Angles’ gradient is calculated by Canny edge detection.

5.3.3 Haralicks Texture Features

These features concern details in the cell like holes and granules. We imple-
mented Haralicks features [1]. It is a set of 14 texture features calculated from
the gray level co-occurrence matrix using 4 directions of adjacency [3]. These
features are angular second moment, contrast, correlation, variance, inverse dif-
ferent moment, sum average, sum variance, sum entropy, entropy, difference
entropy, difference variance, measure of correlation 1, measure of correlation 2
and maximum correlation coefficient.

Figure 17: Gray level co-occurrence matrix[3]

Figure 18: Four directions of adjacency to calculate Haralick’s features[3]

32

Figure 19: 14 Texture features of Haralick equations [3]

5.3.4 Size ratio features

Segmentation of nucleus and cytoplasm is necessary for this problem to be able
to extract some features such as nucleus cytoplasm area, nucleus cell area and
nucleus cell perimeter.

Nucleus cytoplasm area It is the ratio of the area between the nucleus and
the cytoplasm.

NucleusToCytoplasmArea =
NucleusArea

CytoplasmArea
(7)

33

Nucleus cell area It is the ratio of the area between the nucleus and the cell.

NucleusToCellArea =
NucleusArea

CellArea
(8)

Nucleus cell perimeter It is the ratio of the perimeter between the nucleus
and the cell.

NucleusToCellPerimeter =
NucleusPerimeter

CellPerimeter
(9)

5.4 Random Forest Classification

Random Forest classifier is the best classifier that is able to differentiate between
different types and the one which gives us the highest accuracy. Also, the
architecture that this classifier is based on matches our problem as we have
three parent disease classes and each one has many sub-classes as their sub-
types.

5.4.1 Random forest algorithm

Random forest algorithm [2,12,13] is a supervised classification algorithm that
constructs a forest with several decision trees. Highest accuracy results are
achieved with the higher number of trees.

5.4.2 Random forest algorithm advantages

Random forest algorithm achieved successes in medical field as its one of the
most powerful algorithms that is widely used in different applications [2]. It has
many advantages as it can be used in different classification problems such as
banking, stock market and E-commerce [2], it can be used for both classification
and regression and it performs feature selection to only extracts the crucial
features.

34

5.4.3 How Random forest algorithm works

Figure 20: How random forest algorithm works [2]

35

Figure 21: How random forest algorithm works

Pseudocode of the creation of Random Forest goes as shown in Fig. 22

Figure 22: Random Forest pseudocode [2]

Pseudocode of the prediction of Random Forest goes as shown in Fig. 23

36

Figure 23: Random forest prediction pseudocode [2]

5.5 CNN Classification

[11] You might know about machine learning and deep learning. Deep learning
is a subtype of machine learning. Convolutional Neural Network (CNN or Con-
vNet) is a specific kind of such deep neural network. To perform CNN classifier,
you should create a model and include some layers to the model.

5.5.1 Convolutional Layer

[8] This layer is performed when we extract a segment from the image sized (k*k)
centered at location (x,y). We then multiply the extracted segment element-
by-element with convolution filter also sized (k*k) and add them all together to
create a single output. As shown below in Fig.24

Figure 24: Convolutional Layer

5.5.2 Activiation Layer

[8][9] There are several activation functions each have a different function. For
example, Softmax, Linear, Sigmoid, Tanh, Relu, Softsign, Softplus, Selu, Elu,
Hard-sigmoid. Suppose we have filter size 3x3x3 and an input image 32x32x3.

37

In which 32x32 represents Width, Height and 3 represents the depth of the
image. From this image we get 30x30x1 different locations. In fact, there is a
single neuron corresponding to each location. The output from each location
are called Activation and it serves as the input to the next layer.

5.5.3 Max Pooling Layer

[8] The pooling layer is mainly used to reduce the image size (Width and Height
only, not Depth), computation and avoid overfitting. Note: Over Fitting is a
condition occurs when the model accurately works on a given test data.
The common form of pooling is Maximum pooling shown in Fig. 25 Where we
take a filter sized (k*k) and get the maximum value for each sized part of the
image. The output obtained is a region that contains the maximum value from
each part.

Figure 25: Pooling Layer

5.5.4 Flatten Layer

[10] This layer coverts the (3D or 2D) array to a single array.

5.5.5 Dropout Layer

[11] This layer improves the efficiency of neural networks mainly on supervised
learning. And it also prevents the model from overfitting. The main idea is to
drop random units along with their connections during the training phase as
shown in Fig. ??

38

(a) Before Dropout (b) After Dropout

Figure 26: Dropout Layer

5.6 Re-Learning

The system has the ability of learning from misclassified tests to enhance the
future accuracy of the system. After the classification result is appeared, the
doctor has the decision whether its misclassified or correctly classified. If the
system misclassified, the doctor would has the ability to re-classify the cell.
Experts are allowed to have the final decision either to accept the result from
the proposed system or reclassify it with the correct label based on their medical
experience. The system is capable of relearning from the misdiagnosed cases
through fitting the system again with those newly classified samples by the
expert doctors by repeating the training process.

39

Figure 27: Re-learning Flowchart

6 Human Interface Design

6.1 Overview of User Interface

Our system Cancer Chaser user interface is very usable and clear. You can
login whether you are an admin or a doctor. The system navigates you to
different screens depends on your type. System admins have some duties such
as manipulating doctors. While doctors are responsible for dealing with their
patients. In fact, illustration for the whole system will be shown the upcoming
sections (6.2, 6.3).

40

6.2 Screen Images

Figure 28: Login Screen

41

Figure 29: Admin Screen

Figure 30: Hematologist Screen 1

42

Figure 31: Hematologist Screen 2

Fig. 32 shows two text boxes. First is to enter username and second is for the
password. If you logged in as an admin you will access the screens in Fig. 29,
and if you logged in as a doctor youll access screens in Fig. 30, Fig. 31.

In Fig. 29, each admin have two options whether to add a new doctor to the
system or manipulate existing doctors, such as viewing some personal informa-
tion, searching for a doctor, editing doctors specialization or deleting a doctor
from the system. Here comes the doctor screens in Fig. 30. First of all he can
edit his personal information such as (Username, password, address, ..). The
buttons shown at the right is (List Patients) in which the doctor can manipulate
his patients through searching for a patient using his Medical Id, editing some
information such as (Medical Id, Patient Name, Age, Gender, Mobile Number)
and the doctor can also delete any patient from the system. Second button is
(Search Result) and this opens a screen in which the doctor can view his medical
history (Doctor Name, Patient Name, Disease) to perform some operations such
as editing, deleting or searching for a specific medical history. Now it comes the
third button (Add Patient) in which the doctor can add patients to the system.
Moving to the final button (Upload Image) which is shown in Fig. 31. The
initial screen is to upload the sample microscopic image for the patient. Then
crop the region of interest and confirm this crop to move to the next screen.
Now, the doctor will be able to choose an approach from the dropdown list
whether the cropped image is nearly (L1-L2-M5) or (L3-M2-M3-Myeloma) or
(dont know). After choosing an option and clicking classify, the last screen will
now open. The final result is out and the doctor will have one of two options
whether he needs to save the result if its accurate enough or re-classify the result
by entering the right disease type to activate learning from misclassified results

43

module.

7 Requirements Matrix

44

Figure 32: Requirement Matrix

8 References

[1] Robert M. Haralick, “Statistical and structural approaches to texture,” Proc.
IEEE, vol. 67, no. 5, pp. 786-804, 1979.

[2] Polamuri, S. (2018). How the random forest algorithm works in machine
learning. [online] Dataaspirant. Available at: http://dataaspirant.com/2017/05/22/random-
forest-algorithm-machine-learing/.

[3] Boland, M. V. (n.d.). Haralick texture features. Retrieved January 28,
2018, from http://murphylab.web.cmu.edu/publications/boland/bolandnode26.html.

[4] Carolina Reta, Leopoldo Altamirano, Jesus A. Gonzalez, Raquel Diaz-
Hernandez, Hayde Peregrina, Ivan Olmos, Jose E. Alonso, and Ruben Lobato.
Segmentation and Classification of Bone Marrow Cells Images Using Contextual
Information for Medical Diagnosis of Acute Leukemias, 2015.

45

[5] N. Cristianini, J. Shawe-Taylor, Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[6] Saxena, Rahul. How the Naive Bayes Classifier Works in Machine Learn-
ing. Dataaspirant, 6 Feb. 2017, dataaspirant.com/2017/02/06/naive-bayes-classifier-
machine-learning/.

[7] 1.5. Stochastic Gradient Descent. 1.5. Stochastic Gradient Descent -
Scikit-Learn 0.19.1 Documentation, 2017, scikitlearn.org/stable/modules/
sgd.htmlimplementation-details.

[8] Image Classification Using Convolutional Neural Networks in Keras. Https://
Www.learnopencv.com/Image-Classification-Using-Convolutional-Neural-Networks-
in-Keras/, VIKAS GUPTA, 29 Nov. 2017, www.learnopencv.com/image-classification-
using-convolutional-neural-networks-in-keras/.

[9] https://keras.io/activations/:

[10] Tata, Venkatesh. Simple Image Classification Using Convolutional Neu-
ral Network - Deep Learning in Python. Becoming Human: Artificial Intel-
ligence Magazine, Becoming Human: Artificial Intelligence Magazine, 13 Dec.
2017,becominghuman.ai/building-an-image-classifier-using-deep-learning-in-python-
totally-from-a-beginners-perspective-be8dbaf22dd8

[11] Convolutional Neural Networks in Python. DataCamp Community, Aditya
Sharma, 5 Dec. 2017, www.datacamp.com/community/tutorials/convolutional-
neural-networks-python

[12] Liaw, Andy Wiener, Matthew. (2001). Classification and Regression
by RandomForest. Forest. 23.

[13] StatSoft, Inc. (2013). Electronic Statistics Textbook. Tulsa, OK: Stat-
Soft. WEB: http://www.statsoft.com/textbook/

[14] Application of Support Vector Machine and k-means Clustering Algo-
rithms for Robust Chronic Lymphocytic Leukemia Color Cell Segmentation,
nternational Conference on e-Health Networking, Applications and Services
IEEE, 2013.

[15]J. R. Chaitali Raje, Detection of Leukemia in microscopic images us- ing
image processing, Communications and Signal Processing (ICCSP), 2014 Inter-
national Conference on IEEE, 2014.

[16] I. M. M. Sos Agaian Senior Member and I. Anthony T. Chronopoulos
Senior Member, Automated Screening System for Acute Myelogenous Leukemia

46

Detection in Blood Microscopic Images, IEEE Systems Journal, 2014.

[17] Omid Sarrafzadeh1 , Hossein Rabbani1 , Alireza Mehri Dehnavi1 ,
Ardeshir Talebi2, DETECTING DIFFERENT SUB-TYPES OF ACUTE MYELOGE-
NOUS LEUKEMIA USING DICTIONARY LEARNING AND SPARSE REP-
RESENTATION, Image Processing (ICIP), 2015 IEEE International Confer-
ence on, 2015.

47

