
Software Requirement Specification Document for

Project LipDrive

Ziad Thabet, Amr Nabih, Karim Azmi, Youssef Samy
Supervised by: Dr Mai El-Shehaly and Eng Silvia Soliman

June 6, 2018

1 Introduction

1.1 Purpose of this document

The purpose of this document is to present a detailed description of the
LipDrive system. LipDrive system is based on lip-reading, in which lip’s move-
ments are decoded into understandable words. This document will explain the
purpose and features of the system, and describe its interfaces and it will also
explain what the system will do, the constraints under which it must oper-
ate, and how the system will react to user-generated and environment-incurred
stimuli. This software requirements specification (SRS) document is, therefore,
intended for the stakeholders and developers of the LipDrive system; and will
be proposed to Microsoft Egypt. This document is also presented in partial
fulfillment of a graduation project at Misr International University (MIU).

1.2 Scope of this project

The LipDrive system aims to develop a deep learning approach for real-
time detection of spoken words in an autonomous vehicle setting. Not only
does the system work on the word level but also on the sentence level such
as “LipDrive turn left”, “LipDrive go home”. The system will facilitate the
detection of words at variant speeds of speech. This system aims to help a driver
in an autonomous vehicle (AV), to deliver certain commands to the vehicle in
a noisy environment, like passengers talking or radio is on, through lip-reading.
This will increase the accuracy of speech recognition between the driver and the
vehicle. These commands could be as: “Start Ignition, stop the car”, or “set
direction to a certain destination”. Most of the commands will need to be done
instantaneously, like “change lane” or “reduce the speed limit”. This project
would help AV to receive commands in real-time without turning off music or
asking other passengers to stop talking. The system is composed of a camera
which is set in the AV, that will detect the driver’s lips movement and based on
a trained data, the system will be able to detect the spoken command.

1

1.3 Overview of this Document

Lip-reading, according to the Cambridge dictionary, is to understand
what someone is saying by watching the movements of their mouth. Lip-reading
plays a vital role in human communication and speech understanding however,
it is a difficult task to be done by humans. The project aims to enhance the accu-
racy of speech recognition through lip-reading. Using deep learning approach,
the system detects the spoken words of a driver in an Autonomous Vehicle.
The system aims to facilitate speech recognition in a noisy environment, which
facilitates the communication between the vehicle and the driver. Through a
mobile application, the driver will be able to deliver commands to the vehicle
anytime and in any environmental conditions. For example, the driver wants to
get direction for a certain destination. Whether the driver is alone, there are
passengers talking, or there the radio is on, the driver will be able to deliver the
command easily without changing in any of these conditions.

Figure 1: Block Diagram

1.4 Business Context

The Dubai’s Roads and Transport Authority (RTA), has carried out
the first test run of an autonomous vehicle, it is expected to be set to launch
operations by 2020. According to the article entitled ”RTA is the first in the
world in transport sector services technologies.”, RTA’s mission and vision are
mentioned to be:

1. Vision: Safe and Smooth Transport for All

2. Mission: Develop integrated and sustainable transportation systems and
provide distinguished services to all stakeholders to support Dubais com-
prehensive growth plans through preparing policies and legislations, adapt-

2

ing technologies and innovative approaches, and implementing world-class
practices and standards

The project idea was presented to Dr. Ismail Hisham Zohdy, Chief Special-
ist/Program Manager of Self-Driving Transport in Roads and Transport Au-
thority (RTA) in Dubai, and has showed his interest to this project, stating
that he is going to be part of this project’s stakeholder team.

3

Key
Partners
Roads and
Transport Authority
(RTA) in Dubai.

The Dubai's Roads
and Transport
Authority (RTA), has
carried out the first
test run of an
autonomous vehicle,
it is expected to be
set to launch
operations by 2020.

Banks

Online Banking-
Internet Services in
which Banks
provides to its clients
to get various
services without
having to go to the
bank personally.

Key
Activities
Developing,
maintaining and
updating the
machine learning
model(s)

Collecting and
synthesizing
training data-sets.

Key
Resources
Software
Developers

Value Proposition
Speech Recognition Enhancement in
Autonomous Vehicles

The main problem reported by the vast majority of
IPA users, when communicating to an intelligent
personal assistant like Siri or Google, is the vague
detection of words due to the surrounding noise.
Using lip reading approach, LipDrive aims to
enhance the accuracy of speech recognition and
the detection of the commands given by a driver.

Two-Factor Authentication

A major source of concern reported by users
when typing a password, that there are many
people around. Thus, most of the users find that
the most secure authentication method, after
providing username and password, is to have
something that reads your lips.

Customer
Relations
Personal
assistance

Self-Services

Automated
Services

Distribution
Channels
Mobile Application

Through mobile
application, users can
deliver commands to
an AV. In addition, it
can be used as a
Two-Factor
Authentication

Customer
Segments
Autonomous
Vehicles Drivers

Intelligent Personal
Assistant Users

Online Banking
Clients

Lip Drive Business Model

Cost Structure
Software Developers Salaries

Revenue Streams
Banks: A subscription for extra security procedures; giving subscribed
customers the option of the two factor authentication.

Autonomous Vehicle Drivers: An extra feature that allows drivers to interact with
the vehicle; such feature would be an optional add on with a specific price.
And it would be available for higher models, which would be an incentive that
would push higher models' sales.

2 General Description

2.1 Product Functions

The system aims to enhance speech recognition through lip reading.
Thus, the main goal of this project is to develop a deep learning approach for the
real-time detection of spoken words in autonomous vehicles setting. The train-
ing of a deep-layered neural networks is being used to convert lips movement to
written words.

2.2 Similar System Information

The system is a mobile application in which will be able to deliver com-
mands to an autonomous vehicle. The system doesn’t intend to be stand alone
application but a part of the autonomous vehicle setting. A connection will be
set between the application and the vehicle to deliver the commands easily.

2.3 User Characteristics

The system aims to target large number of users who needs a real en-
hancement in speech recognition. These users are classified into two classes.

1. Data curators: users interested in training the model with a specific set
of commands or sentences.

2. Speakers: users who speak to LipDrive and wish to have their lips read
by the software.

2.4 User Problem Statement

Users have stated that the main problem, when communicating to an
intelligent personal assistant like Siri or Google, is the vague detection of words
due to the surrounding noise. On the 10th of November 2018, we have launched a
questionnaire to identify users’ problem with IPA. After collecting 130 responses,
79 of them use IPA and mostly 58.8 percent have faced problems ordering an
IPA due to the surrounding noise. This leads to the dissatisfaction of some users
that 74.5 percent of them stop using the application, while 17 percent of them
ask people to stop talking/or reduce the noise.

6

Figure 2: Statistics 1

Figure 3: Statistics2 2

2.5 User Objectives

The solution is designed for individual users who are using an intelligent
personal assistant, like Siri or google, frequently, in which they are able to give
commands to the mobile or the autonomous vehicle. Moreover, the user is able
to deliver commands in any noisy environment, as the commands are delivered
through lip reading only.

7

2.6 General Constraints

One of the main constraints of the system it the variant light conditions
that the camera could face, the lip reading process is mainly conducted under
the ideal lighting conditions. In addition, the position of the speaker to the
camera, the camera should be positioned in front of the speaker’s face for clear
detection. Not only the position of the speaker, but also the distance between
the speaker and the camera has to be near enough to detect the lips clearly.
Speaker should consider not to be far to deliver the command. Different accents
would be challenging to the system to detect the words.

3 Functional Requirements

3.1 read

Table 1: read

Scope Use case 8.7
Description this function reads from capture video
Action this function graps and retrieve a frame from the captured

video
Input an image empty to retrieve the frame in it
Output return true or false if the image was taken successfully or

not
Precondition camera is pre set pefore calling the function
Post-
condition

the features is extracted from the frame for other processing

Dependencies the feature extraction needs a frame to process on and this
function provides it

Priority 10/10

8

3.2 Classification

3.2.0.1 run epoch

Table 2: run epoch

Scope use case 8.13, 8.14 ,8.15
Description This function start training and testing data
Action it takes object from model and start training the data
Input Model which represent the network that we will be working

on
Session where it encapsulates the environment that tensor-
flow is working on

Output None
Precondition we have to have object from Model and valid session
Post-
condition

the RNN if detect command classify

Dependencies classifying
Priority 10/10

3.3 build rnn graph

Table 3: build rnn graph

Scope Use Case 8.13, 8.14, 8.15
Description This function build network based on CUDNN structure
Action it takes object from Input and and boolean whether it is

training or not and build graph based on them
Input Input and boolean
Output Network
Precondition we have to call getGraph first
Post-
condition

the RNN is created

Dependencies classifying
Priority 10/10

9

3.4 login

Table 4: login

Scope Use Case 8.1 & Non-Functional 6.1
Description Enables the user to get into the system
Action Checking if the user and password exists in the database
Input String name, String password
Output Boolean true or false
Precondition The user must be already signed up
Post-
condition

None

Dependencies User won’t be able to access the system if the user cant
login

Priority 10/10

3.5 Signup

Table 5: Signup

Scope Use Case 8.4 & Non-Functional 6.1
Description This function is to create account for user
Action Takes the information from user and insert it into the

database
Input String firstname,String lastname,String username,String

password,String email
Output boolean
Precondition check if the user exists
Post-
condition

The new account is created

Dependencies Sign in
Priority 10/10

10

3.6 realTimeExtraction

Table 6: realTimeExtraction

Scope use case 8.7 & 8.8
Description this function extract features from a real time image
Action takes a camera object and reads a frame out of it and re-

trieve the features extracted from it
Input camera object
Output vector of of points as features
Precondition camera is intialized with the operating system webcam
Post-
condition

features then go through the rnn to classify the feature

Dependencies the classification of the rnn needs the real time fed images
Priority 10/10

3.7 getFeatures

Table 7: getFeatures

Scope use case 8.7, 8.8, 8.13, 8.14 & 8.15
Description this function extract features from a set of videos
Action takes a videos object and reads a video by video out of it

and retrieve the features extracted from it in a sequence
labelled with the user word

Input videos object
Output sequnce of frames of the extracted feature
Precondition videos paths must be correct
Post-
condition

features then go through the rnn to train, validate and test
the feature

Dependencies the training, validation and testing of the rnn needs the real
time fed images

Priority 10/10

11

3.8 interpolation

Table 8: interpolation

Scope use case 8.13, 8.14, 8.15
Description interpolate frames of videos to resize it with more frames
Action takes video resize it to the number of frames required
Input video and number of frames
Output modified video
Precondition number of frames required must not a negative value or

zero
Post-
condition

none

Dependencies needed to modify video with small number of frames to
stretch it

Priority 10/10

3.9 captureFrame

Table 9: captureFrame

Scope use case 9.7 & 8.8
Description capture the frame
Action returns current frame from camera
Input none
Output image
Precondition camera must be intialized
Post-
condition

none

Dependencies real time feature extraction depends on it
Priority 9/10

12

3.10 add

Table 10: add

Scope nonfunctional requirement 6.2
Description This is a function that is implemented by all models to add

data
Action Adding new object in the database
Input None
Output Boolean true or false
Precondition validate data entered
Post-
condition

object is added in the database

Dependencies None
Priority 9/10

3.11 Encrypte

Table 11: Encrypte

Scope Non-Functional 6.2
Description This function is to encrypt our data to keep it secured
Action Encypt data using RSA algorithim
Input String
Output String
Precondition data is raw
Post-
condition

Data is be encrypted

Dependencies All inherited classes
Priority 9/10

13

3.12 Decrypte

Table 12: Decrypte

Scope Non-Functional 6.2
Description This function is to decrypte our data to keep it secured
Action Decrypte data using RSA algorithim
Input String
Output String
Precondition data is encrypted
Post-
condition

data return to its normal state

Dependencies All inherited classes
Priority 9/10

3.13 changeFrames

Table 13: changeFrames

Scope Use Case 8.1, 8.3, 8.4, 8.6, 8.7, 8.9, 8.12 & Non-Functional
6.2

Description This function is to switch between two different frames
Action It changes from frame to another frame
Input currentFrame
Output nextFrame
Precondition None
Post-
condition

None

Dependencies Nav Bar, Main Frame, History frame, Settings Frame
Priority 8/10

14

3.14 showPassword

Table 14: showPassword

Scope use case 8.1, 8.4
Description This function is to show password
Action change the stars to a visible word
Input None
Output None
Precondition Hidden
Post-
condition

Make it visible

Dependencies SignUP Frame, Forget Password Frame, SignIN Frame
Priority 8/10

3.15 delete

Table 15: delete

Scope nonfunctional requirement 6.2
Description This is a function that is implemented by all models to

delete data
Action Deleting object in the database
Input id of the object
Output Boolean true or false
Precondition Object must be already in the database
Post-
condition

the object is deleted from the database

Dependencies None
Priority 8/10

15

3.16 updateSentence

Table 16: updateSentence

Scope use case 8.7 & 8.8
Description This function displays the spoken sentence
Action Change sentence on the screen to what the vectors was

classified to
Input None
Output None
Precondition classification must be done
Post-
condition

None

Dependencies None
Priority 8/10

3.17 saveToHistory

Table 17: saveToHistory

Scope use case 8.8
Description This function saves the command into the database
Action calls add function in Command model
Input None
Output None
Precondition There must be command
Post-
condition

add function from command model

Dependencies None
Priority 8/10

16

3.18 modify

Table 18: modify

Scope nonfunctional requirement 6.2
Description This is a function that is implemented by all models to

modify data
Action modify model in the database
Input None
Output Boolean true or false
Precondition object must be already in the database
Post-
condition

object is modified if true

Dependencies none
Priority 7/10

3.19 clearHistory

Table 19: clearHistory

Scope use case 8.9, 8.10
Description This is function to clear history of the user
Action Delete all records of user history in the database
Input None
Output Boolean true or false
Precondition User must be logged in
Post-
condition

all of user history is deleted

Dependencies None
Priority 7/10

17

3.20 logOut

Table 20: logOut

Scope use case 8.3
Description This is function to log the user out of the system
Action Sign out and return to login screen
Input None
Output Boolean true or false
Precondition User must be logged in
Post-
condition

redirect to main screen

Dependencies The user wont be able to use the system until the user logs
in again

Priority 7/10

3.21 fillHistory

Table 21: fillHistory

Scope Use Case 8.9
Description This function is to show the history of the commands by

the user
Action Fetch the all history data from the database for the user

and display it
Input None
Output None
Precondition The user must have history & the application is connected

to the server
Post-
condition

The History table is filled by an array of history objects

Dependencies None
Priority 5/10

18

3.22 showHistoryDetails

Table 22: showHistoryDetails

Scope use case 8.9
Description This function displays the history details frame and sends

the historyObject to it
Action It displays the command’s information saved into history-

Object
Input currentFrame, nextFrame, object from historyModel
Output None
Precondition fill History must be called
Post-
condition

history details is showed to the user

Dependencies It depends on History Frame
Priority 5/10

3.23 showDataInformation

Table 23: showDataInformation

Scope Use Case 8.9
Description This is function is to view the information of a command

given by the user time of the command location
Action Fetch the details of a certain command
Input ID of selected History
Output None
Precondition The history frame must contain histories to be able to show

its details
Post-
condition

It shows the details of a chosen command

Dependencies It depends on Functional-Requirement fillHistory &
showHistoryDetails

Priority 3/10

4 Interface Requirements

4.1 User Interfaces

4.1.1 GUI

1. Login Screens

19

(a) LogIN (b) Facebook
(c) Google

Figure 4: SignIN

20

2. SignUP Screen

Figure 5: SignUP

3. Forget my password Screen

Figure 6: Forgot password

21

4. Main Screens

(a) History (b) Home
(c) Settings

Figure 7: Main Screens

22

5. Camera Screen

Figure 8: Camera

6. History details Screen

Figure 9: History Details

23

4.1.2 CLI

1. git

(a) to pull $ git pull

(b) to add files $ git add . or $ git add *

(c) to make a commit $ git commit -m ”what sort of commit”

(d) to push to server $ git push -u origin master

(e) to get status $ git status

4.1.3 API

1. Facebook Login API

2. Google Login API

3. Google Maps API

4. DLib

5. Tensorflow

6. openCV

5 Design Constraints

5.1 Software constraints

The application runs on android 4.4 or IOS 9.5

6 Performance Requirements

For speech recognition, the system shall be able to process at least 25 frames
per second and 40 frames per second in peak load.

For model training, the system must be able to handle large training datasets
to ensure model accuracy. Sample run times for different training datasets are
listed in Table 24.

Table 24: Performance measures from different datasets

Data set name Data set Type Frames Processed Per Second
MIRACL-VC1 Frame per frame 11

The GRID audiovisual sentence corpus full video 40

24

7 Other non-functional attributes

7.1 Security

The username and password should be encrypted and the data transmitted to
database should be saved securely

7.2 Maintainability

The system could be improved by different developers so its maintainability
should be easy by documenting the code and the design and by using differ-
ent design patterns as MVC design pattern, Singleton design pattern, Strategy
design pattern

7.3 Portability

The system may be deployed on different mobile platforms (iOS/Android)

7.4 Usability

• Learnability: Proportion of functionalities or tasks mastered doesn’t need
time to be learned

• Memorability: This system is easy to be memorized due to the small
number of tasks the user will do

7.5 Reliability

• Speed: The system aims to detect commands on real-time processing

• Accuracy: The accuracy of detection should be high that the user shall
not re-order the command

25

8 Preliminary Object-Oriented Domain Analy-
sis

Figure 10: Class Diagram

26

8.1 Main Frame Class

Figure 11: Main frame

1. Class name: Main Frame

2. List of Superclasses: iTransitions, iInitializePositions, iPressButton

3. List of Subclasses: Home Frame, Camera Frame,
History Details Frame,
History Settings Frame, SignUP Frame, SignIN Frame, Forget Password Frame

4. Purpose: This class is used to define the basic frame with its background-
color

5. Collaborations: This class must interact with the ”Navbar” class to add
the Navigation bar to the frame by a composition relationship. This class
implements the ”iTransitions” interface to be able to switch between dif-
ferent frames, the ”iInitializePositions” interface to be able to set the
positions of UI elements and display them, and it implements the ”iPress-
Button” interface to handle the Event Listeners to any button. This class
has an association relationship with the ”iTransitions” interface to let sub-
classes able to switch frames, this class has also object user that is hold
through out the project

6. Attributes:

(a) color backgroundColor

(b) Navbar NavigationBar

7. Operations:

27

(a) void initializeColor(): This method is used to set the background
color of the frame

(b) void pressAnyButton(): This method is used to handle the events
while interacting with buttons

(c) void initializePositions(): This method is used to initialize the posi-
tions of UI components on the screen

(d) void changeFrames(currentFrame,nextFrame): This method is used
to switch between two different frames

8.2 Navbar Class

Figure 12: Navbar

1. Class name: Navbar

2. List of Superclasses: None

3. List of Subclasses: None

4. Purpose: This class is used to define different types of navigation bar
according to different pages

5. Collaborations: This class helps in the composition of ”Main Frame” class
to add the navigation bar to the top of the Frame

6. Attributes:

(a) CV::iconImage leftItem

(b) CV::iconImage centerItem

(c) CV::iconImage rightItem

28

(d) Color navColor

7. Operations:

(a) void initializePositions(): This method is used to define the positions
and the dimensions of the navigation bar

(b) void setIcon(int Position, CV::iconImage Icon): This method is used
to set the image icon for three different icons positions: the left/center/right
icons

(c) void setCenterBullets(int bulletPosition): This method is used in
the ”Home Frame”, ”History Frame” or ”Settings Frame” to add the
three navigation bullets

(d) void pressItems(): This method is used to handle events of the but-
tons in the navigation bar

(e) void swapFrames(currentFrame, NextFrame): This method is used
to switch between different frames

8.3 SignIN Frame Class

Figure 13: Sign in frame

1. Class name: SignIN Frame

2. List of Superclasses: iShowPassword, iEncrypteDecrypte, Main Frame

3. List of Subclasses: None

4. Purpose: This class is used to login to your application

29

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame. It implements the ”iShow-
Password” interface to be able to show the hidden password in the pass-
wordTextField, and it also implements the ”iEncryptDecrypt” interface
to encrypt and decrypt the password while logging in

6. Attributes:

(a) TextField usernameTextField

(b) TextField passwordTextField

(c) Button showPasswordButton

(d) Button signInButton

(e) Button forgetMyPasswordButton

(f) Button createAnAcount

(g) Button signInFacebook

(h) Button signInGoogle

7. Operations:

(a) void showPassword(): This method is used to show the password-
TextField content

(b) String Encrypt(String str): This method is used to encrypt the passed
string and returns the encrypted one

(c) String Decrypt(String str): This method is used to decrypt the passed
string and returns the decrypted one

8.4 SignUP Frame Class

Figure 14: Sign up frame

30

1. Class name: SignUP Frame

2. List of Superclasses: iShowPassword, iEncrypteDecrypte, Main Frame

3. List of Subclasses: None

4. Purpose: This class is used to sign up to your application

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame. It implements the ”iShow-
Password” interface to be able to show the hidden password in the pass-
wordTextField, and it also implements the ”iEncryptDecrypt” interface
to encrypt and decrypt the password while signing up in

6. Attributes:

(a) TextField FNameTextField

(b) TextField LNameTextField

(c) TextField emailTextField

(d) TextField usernameTextField

(e) TextField passwordTextField

(f) Button showPasswordButton

(g) Button signUpButton

7. Operations:

(a) void showPassword(): This method is used to show the password-
TextField content

(b) String Encrypt(String str): This method is used to encrypt the passed
string and returns the encrypted one

(c) String Decrypt(String str): This method is used to decrypt the passed
string and returns the decrypted one

31

8.5 Forget Password Frame Class

Figure 15: Forget password frame

1. Class name: Forget Password Frame

2. List of Superclasses: iShowPassword, iEncrypteDecrypte, Main Frame

3. List of Subclasses: None

4. Purpose: This class is used to change user’s password if he forgot it

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame. It implements the ”iShow-
Password” interface to be able to show the hidden password in the pass-
wordTextField, and it also implements the ”iEncryptDecrypt” interface
to encrypt and decrypt the password while signing up in

6. Attributes:

(a) TextField newPasswordTextField

(b) TextField verifyNewPasswordTextField

(c) Button showPasswordButton

(d) Button signUpButton

7. Operations:

(a) void showPassword(): This method is used to show the password-
TextField content

(b) String Encrypt(String str): This method is used to encrypt the passed
string and returns the encrypted one

(c) String Decrypt(String str): This method is used to decrypt the passed
string and returns the decrypted one

32

8.6 Home Frame Class

Figure 16: Home frame

1. Class name: Home Frame

2. List of Superclasses: Main Frame

3. List of Subclasses: None

4. Purpose: This class is the home page our application

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame.

6. Attributes:

(a) Label readMyLipLabel

(b) Button readMyLipButton

7. Operations: None

33

8.7 Camera Frame Class

Figure 17: Camera

1. Class name: Camera Frame

2. List of Superclasses: Main Frame

3. List of Subclasses: None

4. Purpose: This class is used to take real-time images, extract features from
them and classify them into commands (sentences)

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame.

6. Attributes:

(a) ImageView cameraView

(b) Label sentenceLabel

7. Operations:

(a) void updateSentence(): This method is used to update the sentence
label

(b) void saveToHistory(): This method is used to save the sentences into
the database

34

8.8 History Settings Frame Class

Figure 18: History Settings

1. Class name: History Settings Frame

2. List of Superclasses: Main Frame

3. List of Subclasses: History Frame, Settings Frame

4. Purpose: This class is used to initialize the tables for histories and settings

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame.

6. Attributes:

(a) Label[] arrayOfLabels

(b) Tables[] arrayOfTables

7. Operations:

(a) void fillLabels(): This method is used to display the array of history
labels (Dates)

(b) void fillTables(): This method is used to display the corresponding
table for each history label

35

8.9 History Frame Class

Figure 19: History

1. Class name: History Frame

2. List of Superclasses: History Settings Frame

3. List of Subclasses: None

4. Purpose: This class is used to get all user’s histories from the database
and let user interact with each record to show its details

5. Collaborations: This class inherits the ”History Settings Frame” class to
initialize the labels and tables. This class has an association relationship
with the ”History Details Frame” class to switch from the current frame
to the History Details frame and send the history object to it

6. Attributes:

(a) History[] arrayOfHistories

7. Operations:

(a) void fillHistory(): This is method is used to fill the labels and tables
with the retrieved data

(b) void showHistoryDetails(currentFrame,nextFrame,historyObject): This
method is used to switch between the current frame and the His-
tory Details frame and pass the history object to its constructor

36

8.10 Settings Frame Class

Figure 20: Settings frame

1. Class name: Settings Frame

2. List of Superclasses: History Settings Frame

3. List of Subclasses: None

4. Purpose: This class is used to get all settings options

5. Collaborations: This class inherits the ”History Settings Frame” class to
initialize the labels and tables.

6. Attributes: None

7. Operations:

(a) void clearHistory(): This is method is used to clear the history
records into the database

(b) void logOut(): This method is used to destroy application’s sessions
and redirect to the SignIN Frame

37

8.11 History Details Frame Class

Figure 21: History details frame

1. Class name: History Details Frame

2. List of Superclasses: Main Frame

3. List of Subclasses: None

4. Purpose: This class is used to display the details of the selected history

5. Collaborations: This class inherits the ”Main Frame” class to initialize
the layouts and navigation bar for this frame.

6. Attributes:

(a) Label sentenceLabel

(b) Label dateLabel

(c) Label timeLabel

(d) Label locationLabel

(e) MapView mapView

7. Operations:

(a) void showDataInformation(): This method is used to display the
retrieved data from the constructor

38

8.12 Input Class

Figure 22: Input Class

1. Class name: Input

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: This class is used to have the data that will be trained and tested

5. Collaborations: Word through words

6. Attributes:

(a) Word words array of words

(b) Int batch size

(c) Int num steps

(d) Int epoch size

7. Operations: None

39

8.13 Model Class

Figure 23: Model Class

1. Class name: Model

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: This class is used to have the model that will be trained on

5. Collaborations: Input through input,Grapg through typeOfGraph

6. Attributes:

(a) Bool is trianing

(b) Input input the data

(c) Graph this wil be refrence on the algorthim will be used

7. Operations: None

8.14 Classification Class

Figure 24: Classification Class

1. Class name: Classification

2. List of Superclasses: None

40

3. List of subclasses: None

4. Purpose: This class is to run train and testing

5. Collaborations: None

6. Attributes: None

7. Operations:

(a) run epoch(session, Model)
This function is to classify the data

(b) producer(Input)
This function is to turn the data into batches and tensors

8.15 Point Class

Figure 25: Point Class

1. Class name: Point

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: the postion of the point relative to x axis and y to axis

5. Collaborations: None

6. Attributes:

(a) Int x

41

(b) Int y

7. Operations: None

8.16 Vector Class

Figure 26: Vector Class

1. Class name: Vector

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: To hold the position of each point of the lips in one frame

5. Collaborations: Point througt vertex

6. Attributes:

(a) Vector Vertex array of points

7. Operations: None

42

8.17 Word Class

Figure 27: Word Class

1. Class name: Word

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: To hold the position of each point of the lips for the whole word

5. Collaborations: Vector through vec

6. Attributes:

(a) Vec array of Vector

(b) String the word

7. Operations: None

43

8.18 LstmGraph Class

Figure 28: LSTMGraph Class

1. Class name: LstmGraph

2. List of Superclasses: IGraph

3. List of subclasses: None

4. Purpose: to build graph RNN based on Lstm

5. Collaborations: None

6. Attributes: None

7. Operations:

(a) build rnn graph(Input:imputs,bool:is trainig)
this function chooses which RRN graph will be our classifier it
is from interface Graph

(b) get lstm cell(Config:config,bool:istraining)
this function is the one making stack of LSTM layers in the graph

44

8.19 CudnnGraph

Figure 29: CUDNNGraph Class

1. Class name: CudnnGraph

2. List of Superclasses: IGraph

3. List of subclasses: None

4. Purpose: to build graph RNN based on Cudnn

5. Collaborations: None

6. Attributes: None

7. Operations:

(a) build rnn graph(Input:imputs,bool:is trainig)
this function chooses which RRN graph will be our classifier it
is from interface Graph

8.20 Resolution Class

1. Class name: Resolution

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: Used to hold frame width and height and pixel per inch

5. Collaborations: None

6. Attributes

(a) int height

(b) int width

(c) int pixelPerInch

7. Operations : None

45

8.21 OpenCV::VideoCapture Class

Figure 30: Video:CV

1. Class name: OpenCV::VideoCapture

2. List of Superclasses: A/N

3. List of subclasses: Videos, Camera

4. Purpose: Handles the camera and video files operations

5. Collaborations: this class aggregates Resolution class to hold the captured
image resolution

6. Attributes

(a) Pointer CvCapture cap

(b) Pointer IVideoCapture icap

(c) Resolution res

7. Operations

(a) VideoCapture (const String &filename): This function is to open a
video with a certain path

(b) VideoCapture (int): This function is to open camera

(c) bool read (OutputArray image): Grabs and returns the next video
frame

(d) bool isOpened () const: Checks if video capturing is intialized or not

(e) void release (): destroy video capture

(f) double get (int propId) const: Returns the specified VideoCapture
property

46

8.22 LipFeatures Class

Figure 31: Lip Features

1. Class name: LipFeatures

2. List of Superclasses: None

3. List of subclasses: None

4. Purpose: using DLib CNN this class is used to handle extracting and
formatting the features out of the captures images

5. Collaborations: this class associate with class Word and Vector to convert
the image into extracted feature, camera to get real time fed images, video
to get frames for one video

6. Attributes : None

7. Operations

(a) Vector realTimeExtraction(cam Camera): gets camera frame and
extract

(b) Word videoExtraction (oneVideo Video): This function process on
video frame by frame and extract the features out of it

(c) bool read (OutputArray image): Grabs and returns the next video
frame

(d) Vector extractFeature(frame Frame): this function takes a frame (im-
age) specifies features in it

(e) Video interpolation (oneVideo Video , NumberOfFrames int): this
function takes the video and see the required number of frames and
fill the empty spaces with average between two images

47

8.23 Videos class

Figure 32: Video Class

1. Class name: Videos

2. List of Superclasses: OpenCV:VideoCapture Class

3. Purpose: this class handle an area of paths of videos and handle loading
and getting the videos

4. Collaborations: this class inherit OpenCV:VideoCapture Class to open
camera and handle capturing frames

5. Attributes

(a) String[] paths

6. Operations

(a) Video (pathFolder String): constructor takes the folder path and
collect all the paths of videos in it

(b) VideoCapture getvideo(int index): takes the index and returns the
video to the index sent

48

8.24 Camera Class

Figure 33: Camera class

1. Class name: Camera

2. List of Superclasses: OpenCV:VideoCapture Class

3. Purpose: this class is used to handle a real time videos comming from a
camera

4. Collaborations: this class inherit OpenCV:VideoCapture Class to load
videos

5. Attributes

(a) int type

(b) int currentFrame

6. Operations

(a) Mat captureFrame (): return cameras current frame

(b) Mat convertImagetoGray (Mat image): convert the image into gray
scale

49

8.25 User Model Class

Figure 34: User Model class

1. Class name: User Model

2. List of Superclasses: IDatabase

3. Purpose: this class is used hold user info inside it

4. Collaborations:this class has account for security and is object of Main
frame to be a single user using the app

5. Attributes

(a) int id

(b) string firstName

(c) string lastName

(d) string email

(e) account Account

6. Operations

(a) void logIn () : creates a session for the user to stay logged in through
all pages

(b) boolean checkIfUserExists() : check if the user exists returns true if
not returns false

50

(c) void signUP () : creates new user in the database

(d) void add() : add new User

(e) void modify() : edit existing user

(f) void delete() : delete existing user

8.26 Account Model Class

Figure 35: Account Model class

1. Class name: Account Model

2. List of Superclasses: IDatabase

3. Purpose: this class is used to hold account info

4. Collaborations: this class is an object of inside user

5. Attributes

(a) int id

(b) string username

(c) string password

(d) bool isAPI

6. Operations

(a) void getAPIinfo(user User) :return from a specific API the user info

(b) void add() : add new account

(c) void modify() : edit existing account

(d) void delete() : delete existing account

51

8.27 Command Model Class

Figure 36: Command Model class

1. Class name: Command Model

2. List of Superclasses: IDatabase

3. Purpose: this class is used to hold Command info

4. Collaborations: this class is an object of inside History Model

5. Attributes

(a) int id

(b) string command

6. Operations

(a) void add() : add new command

(b) void modify() : edit existing command

(c) void delete() : delete existing command

52

8.28 History Model Class

Figure 37: History Model class

1. Class name: History Model

2. List of Superclasses: IDatabase

3. Purpose: this class is used to hold History info

4. Collaborations: this class is an object of inside user

5. Attributes

(a) int id

(b) Time time

(c) Date date

(d) longitude double

(e) latitude double

(f) Command command

(g) user id int

6. Operations

(a) void add() : add new history

(b) void modify() : edit existing history

(c) void delete() : delete existing history

53

9 Operational Scenarios

Figure 38: use case 1

9.1 Use Case: Login [using username and password]

• Scope: Login form

54

• Level: User goal

• Intention in context: The intention of the user is to login by using user-
name and password to use the application

• Primary actor: Registered user

• Main success scenario:

1. User enters username and password

2. System validates these inputs

3. System login to profile

• Extensions:

– 2.a User enters invalid input

∗ System informs the user, then back to step 1

– 2.b User cancels the login

∗ Use case ends in failure

9.2 Use Case: Login [using Lip movement sequence]

• Scope: Login Form

• Level: User goal

• Intention in context: The intention of the user is to login by using lip
movement sequence to use the application

• Primary actor: Registered user

• Main success scenario:

1. User opens camera and uses lips movement sequence

2. System validates these sequence

3. System login to profile

• Extensions:

– 2.a User moves invalid sequence

∗ System informs the user, then back to step 1

– 2.b User cancels the login

∗ Use case ends in failure

55

9.3 Use Case: Logout

• Scope: Settings menu

• Level: User goal

• Intention in context: The intention of the user is to logout from the ap-
plication

• Primary actor: Registered user

• Main success scenario:

1. user opens settings, then presses logout button to logout.

2. System logout from user’s profile

• Extensions: none

9.4 Use Case: Sign-Up [using username and password]

• Scope: Registration form

• Level: User goal

• Intention in context: The intention of the user is to create an account on
the application.

• Primary actor: Registering user

• Main success scenario:

1. User enters first name, last name and e-mail.

2. User enters username and password and confirm password.

3. System validates that password and confirm password are the same

4. System login to profile

• Extensions:

– 2.a User enters different password in password and confirm password
field

∗ System informs user, then back to step 1

– 2.b User cancels to Signup

∗ Use case ends in failure

56

9.5 Use Case: change password [using input password]

• Scope: change password form

• Level: User goal

• Intention in context: The intention of the user is to change password if
forgotten

• Primary actor: Registered user

• Main success scenario:

1. User enters new password

2. System asks to enter the password again for confirmation

3. System changes the password

• Extensions:

– 2.a User enters different password than that in the confirmation field

∗ System informs the user, then back to step 1

– 2.b User cancels to Signup

∗ Use case ends in failure

57

Figure 39: use case 2

9.6 Use Case: Open Camera

• Scope: LipDrive main screen

• Level: User goal

• Intention in context: The intention of the user is to open camera to start
classifying a certain command

• Primary actor: Registered user

• Main success scenario:

1. User presses on the Lip button to open the camera

58

2. Application opens the camera

• Extensions: none

9.7 Use Case: Classify a Command

• Scope: Camera frame

• Level: User goal

• Intention in context: The intention of the user is to order a certain com-
mand to the camera

• Primary actor: Registered user

• Main success scenario:

1. User starts ordering the camera

2. System extract the features of the lips

3. System starts to compare the lips movements with the trained com-
mand

4. System classifies the command

• Extensions:

– 2.a System fails to extract the lips’ features

∗ System informs user to adjust camera clearly, then back to step
1

– 2.b User cancels to classify a command

∗ Use case ends in failure

– 3.a System couldn’t find the classified ordered

∗ System informs user to re-order the command, then back to step
1

– 3.b User cancels to classify a command

∗ Use case ends in failure

9.8 Use Case: Show History

• Scope: History view

• Level: User goal

• Intention in context: The intention of the user is to show all previous
classified orders

• Primary actor: Registered user

59

• Main success scenario:

1. User opens History view

2. Histories are the shown by the application by date

• Extensions: none

9.9 Use Case: Delete History

• Scope: History view

• Level: User goal

• Intention in context: The intention of the user is to delete specific history

• Primary actor: Registered user

• Main success scenario:

1. User opens History view

2. Histories are the shown by the application by date

3. User select a record in the history

4. User deletes selected history

• Extensions: none

9.10 Use Case: Clear All History

• Scope: Settings view

• Level: User goal

• Intention in context: The intention of the user is to clear all previous
classified orders

• Primary actor: Registered user

• Main success scenario:

1. User opens settings view

2. User presses on clear all history button

3. System clears all history

• Extensions: none

60

9.11 Use Case: Open Settings

• Scope: Settings view

• Level: User goal

• Intention in context: The intention of the user is to open application
settings

• Primary actor: Registered user

• Main success scenario:

1. User opens settings view

2. System shows all available settings

• Extensions: none

Figure 40: use case 1

61

9.12 Use Case: Train

• Scope: Command Line

• Level: user goal

• Intention in context: The intention of the user to insert a training dataset
into the RNN

• Primary actor: User Curator

• Main success scenario:

1. The user choose a specific folder with dataset in it

2. User then should press start training

3. System starts extracting features and feed it to the RNN

4. System outputs results of training

• Extensions:

– 2.a User enters invalid path

∗ System informs the user, then back to step 1

– 2.b User cancels the training process

∗ Use case ends in failure

– 2.c User enters invalid dataset extensions

∗ Use case ends in failure

9.13 Use Case: Test

• Scope: Command Line

• Level: user goal

• Intention in context: The intention of the user to insert a testing dataset
into the RNN

• Primary actor: User Curator

• Main success scenario:

1. The user choose a specific folder with dataset in it

2. User then should press start testing

3. System starts extracting features and feed it to the RNN

4. System outputs results of testing

• Extensions:

– 2.a User enters invalid path

62

∗ System informs the user, then back to step 1

– 2.b User cancels the testing process

∗ Use case ends in failure

– 2.c User enters invalid dataset extensions

∗ Use case ends in failure

9.14 Use Case: Validate

• Scope: Command Line

• Level: user goal

• Intention in context: The intention of the user to insert a validating
dataset into the RNN

• Primary actor: User Curator

• Main success scenario:

1. the user choose a specific folder with dataset in it

2. user then should press start validating

3. system start extracting features and feed it to the RNN

4. system output results of validating

• Extensions:

– 2.a User enters invalid path

∗ System informs the user, then back to step 1

– 2.b User cancels the validating process

∗ Use case ends in failure

– 2.c User enters invalid dataset extensions

∗ Use case ends in failure

10 Design Constraints

10.1 Software constraints

The application runs on android 4.4 or IOS 9.5

63

11 Preliminary Schedule Adjusted

Figure 41: Time plan

12 Preliminary Budget Adjusted

iPhone SE 16GB 6,950 LE

64

References

[1] Neeru Rathee ”A novel approach for lip Reading based on neural network”,18
July 2016 in IEEE

[2] Bor-Shing Lin, Yu-Hsien Yao, Ching-Feng Liu ”Development of Novel Lip-
reading Recognition Algorithm”,09 January 2017 in IEEE

[3] Chung, Joon Son, and Andrew Zisserman. Lip Reading in the Wild. Springer-
Link, Springer, Cham, 20 Nov 2016.

[4] Assael, Yannis M., et al. LipNet: End-to-End Sentence-Level Lipreading. ,
16 Dec. 2016

[5] Mengchen Liu, Jiaxin Shi, Zhen Li ”Towards Better Analysis of Deep Con-
volutional Neural Networks”, 09 August 2016 in IEEE

[6] Sonu Lamba, Neeta Nain, Harendra Chahar ”A Robust Multi-Model Ap-
proach for Face Detection in Crowd”,24 April 2017 in IEEE

[7] Amit Garg , Jonathan Noyola, Sameep Bagadia ”Lip reading using CNN
and LSTM”, 2016 in stanford.edu

[8] Fatemeh Sadat Lesani, Faranak Fotouhi Ghazvini, Rouhollah Dianat ”Mo-
bile phone security using automatic lip reading”,16 July 2015 in IEEE

[9] Daehyun Lee, Kyungsik Myung ”Read My Lips, Login to the Virtual
World”,30 March 2017 in IEEE

[10] Seksan Mathulaprangsan, Chien-Yao Wang, Aufaclav Zatu Kusum ”A Sur-
vey of Visual Lip Reading and Lip-Password Verification”,23 June 2016 in
IEEE

[11] N. Radha, A. Shahina, A. Nayeemulla Khan ”A person identification system
combining recognition of face and lip-read passwords”,18 February 2016 in
IEEE

[12] N. Radha, A. Shahina, A. Nayeemulla Khan ”Automated Lip Reading Tech-
nique for Password Authentication”, September 2012 in ijais.org

[13] A. Rekik, A. Ben-Hamadou, and W. Mahdi,A new vi-sual speech recog-
nition approach for RGB-D cameras, in Image Analysis and Recognition -
11th International Con-ference, ICIAR 2014, Vilamoura, Portugal, October
22-24,2014, Proceedings, Part II, 2014, pp. 2128.

65

