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1 Abstract

e Current machine learning analyses of Basal Cell Carcinoma (BCC) der-
moscopy images have failed to create a model viable for use in clinical
applications.

e In this paper, They demonstrate a sensitivity and specificity that could
make neural networks a realistic tool for dermatologists.

e Their algorithm follows a three step process:

1. The original image is preprocessed and fed into the segmentation
model

2. A black and white lesion map is produced to extract the minimum
area of the image

3. The classification model is introduced for classifying whether an input
image is BCC or not

e By building upon melanoma research performed by He, et al., They reached
an overall weighted sensitivity and specificity of 96% and 89%, respec-
tively.

e They demonstrated that deep residual neural networks (; 100 layers),
carefully optimized, can surpass the limitations of depth one sees with
more common convolutional neural networks.



2 Introduction

e Kighty percent of skin cancer occurrences are BCC, making it the most
common type of cancer in the world.

e Despite the high prevalence of BCC, metastatic growth is quite uncom-
mon, as is death.

e In order to get a clear image of a lesion, dermatologists often use der-
moscopy imaging, a non-invasive method of visualizing micro-structures
of the skin with high magni-fication.

e As Kittler, et al., has shown in, dermoscopy has improved the diagnostic
accuracy of melanoma by 10-27% over simple naked eye examinations.
Nevertheless, the accuracy of analyzing dermoscopy images still depends
on the experience of a physician.

e A dermatologist not trained in reading dermoscopy images can be less
accurate than naked eye analysis. Once the time required to obtain der-
moscopy images is considered, it is clear that automated recognition sys-
tems are more efficient.

e Simple neural networks that achieve a modest level of accuracy are not
difficult to create; however, a system that can achieve an accuracy viable
for clinical use is quite challenging and depends on several features such
as: vari-ations between size and shape, contrast between where the lesions
begin and end, and artifacts such as hair color and veins.

e In addition, BCC itself is classified into 2 major sub-types:

1. Nodular
2. Superficial

each with their own defining characteristics.

e There is little research on BCC and neural networks, and the works pro-
vided have been insufficient thus far.

e In 2011, Cheng, et al., published two papers related to BCC.

1. The first paper diagnoses BCC via telangiectasia analysis. 96.7%
accuracy was claimed, however, in actual clinical practice, true ac-
curacy will be significantly less due to lack of telangiectasias in early
lesions, and telangiectasias with similar features being in benign skin
lesions.

2. The second published paper used a novel technique of combining fea-
ture extraction from lesions with features of the patient’s personal
profile and physical exam characteristics of lesions. There was, how-
ever, no accuracy, specificity, or sensitivity values provided. As a
result, no meaningful conclusions can be drawn from this paper



e In 2016, Kharazmi, et al., provided a method for detecting BCC based on
the vascular features of a lesion. By generating a vessel mask based on
pigmen-tation (specifically hemoglobin and melanin components) of the
underlying skin, they were able to extract a set of 12 vascular features
to use in diagnosis of BCC. While their system on its own would not be
comprehensive enough, further improvements in our own system could
incorporate Kharazmis’ work in the future.

e To their knowledge, there is no previous work done on residual neural
networks being trained on a dataset of BCC images.

e In this paper, they present, the first attempt to solve this problem. By
using a fully convolutional residual neural network (FCRN) for segmen-
tation and a deep residual neural network (NN) for classification, they
seek to automatically diagnose a malignant lesion, providing a starting
mode that can one day be used on images taken with an optical cam-
era. their inspiration is drawn from Lequan, et al., paper on Automated
Melanoma Recognition in Dermoscopy Images via Very Deep Residual
Network. They base their work on improving upon the techniques they
used



3

3.1

Method

Overview

They present the details of the two-stage deep residual NN for lesion segmenta-
tion and classification.

1.

3.2

First, the input lesion’s original image will be preprocessed and fed into
the segmentation model.

Then, a black and white lesion map is generated based on the input image,
which is then used to extract the segment of our original image.

Finally, our classification model is introduced for identifying if our input
fundus image is BCC.

Residual Neural Networks

Most biomedical imaging NN use convolutional neural networks (CNN)
foranalysis,asthis hasdominatedthe field since the introduction of AlexNet
in 2012. This approach poses several limitations:

1. Med-ical datasets are often limited in quantity.

2. Analyzing the images in these datasets requires the parsing of very
discriminative features. For a NN to parse these features, the depth
the NN reaches is most important. However, as a CNN’s depth
increases, accuracy eventually reaches a plateau and then degrades
away from an optimal solution

3. Other problems arise such as the exploding/vanishing gradient prob-
lem in which the gradient moves at a rate slower or faster than what
is optimal in earlier layers of the network

In many deep CNNs the gradient tends to be unstable and is a fundamental
issue in gradient based learning. To avoid these issues, their model draws
upon the work done by He, et al., on Residual Neural Networks (Resnets).

ResNets are a new NN model built of tens to hundreds of residual blocks.
Most residual blocks consist of two parts:

1. The first being a set of nonlinear manifestations (e.g., convolutional
layers, rectified linear unit layers, and batch normalization). The
output of this block is summed with the second part of the residual
block,

2. The second part of the residual block, an identity mapping, which
is a linear transformation that skips one or more layers. The iden-
tity block adds no extra complexity to the model as it has no extra
parameters, but is key in solving the degradation problem. The re-
sult of these transformations is a NN capable of reaching hundreds (



possibly event housands) of layers deep and being increasingly more
robust to the problems a standard CNN would experience when an-
alyzing medical image datasets. A residual unit can be expressed as:
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where yn is the input feature set to Nth € 1, ..., N residual unit and
X, is the weights for the Nth layer. RES(:) is the residual function
itself, represented by a convolutional layer (weight), a batch normali-
sation (BN) and a rectified linear unit (ReLU), and iy, is an identity

mapping

3.2.1 Preprocessing

e Due to the nature of their dataset being a combination of two different
databases, their first step was to normalize our inputs by re-sizing our der-
moscopy images down to 480x480. This has the added benefit of allowing
them to decrease training times by increasing their batch size, due to the
increased free memory space.

e Their next step was data augmentation. Data augmentation allows them
to create new dataset samples from existing ones while still maintaining
labels for training. During training, they augmented the dataset by ran-
dom rotations (maximal range of 270), and random flipping (vertical).
This allowed them to increase their dataset from 1,520 images to 12,160
images. Those familiar with dermoscopy may make the argument that
an additional preprocessing step is required due to the surrounding struc-
tures such as hair, moles, or droplets of water created when preparing the
dermoscopy images. As seen in in Figure 1,

Fig. |: Segmentation Model with Hair Occlusion

an original BCC lesion is shown next to the output of their segmentation
model demonstrating no irregularities when part of the lesion was occluded
by hair follicles.

e Similar images in their dataset also suffered no loss in accuracy with oc-
clusion, as they believe that their NN model is capable of interpreting
extraneous information as non-pertinent to the lesion at hand.



3.3

Segmentation

e Despite the ResNet model presented in being de-signed for classification,

3.4

only a small number of changes as described in were required to adapt
for segmentation, the most important being using a fully convolutional
network (FCN).

As opposed to a traditional CNN, which is translation invariant, a FCN
adds an expanding path composed of either efficient non linear transposed
convolutions, or unpooling layers. FCN allows the NN to process spatial
informa-tion that was missed from previous layers.

Their automated segmentation model is based on the model presented in
with the exceptions described below. Due to their utilization of Keras
and Theano instead of Caffe, there were several steps which had to be
performed before their model could be utilized. The main focus was rec-
ognizing how Caffe and Keras differ in terms of model network setup.
The most pertinent difference was that many parameters do not translate
directly over from Caffe to Keras. For this they used either defaults or
their best intuition for rebuilding the model e.g. using a Glorot Uniform
Initializer (a.k.a Xavier uniform initializer) for their deconvolution layers.

Integration

After their segmentation algorithm processes an input im-age, the output
is a set of matrix values between 0 and 1 that are converted to a single
channel PNG and scaled between 0 to 255, with a value of 0 corresponding
to a high probability of extraneous information and 255 indicating a high
probability of lesion.

They use this PNG to crop an overlay of the original lesion using a sim-
ple algorithm written in Python that draws a bounding box around the
original lesion.

Aside from the decrease in memory cost when loading a smaller image into
the NN, there are added benefits, for example avoiding features that are
not important to the lesion such as moles or hairs adjacent to the lesion,
preventing accidental data leakage. The output of our integration stage is
shown in figure 2.

(a) Original (b} Segmented (c) Cropped

Fig. 2: Segmentation Model from Beginning to End



3.5 Classification

e They employ a very deep residual network as their classifi-cation model,
with an input from their integration state.

e The organization of the classification model is nearly identical to their
segmentation model, except that the output is one hot encoded with a
range from 0 to 1 representing a probability of whether an image is BCC
or not.



4 Experimental Design and Results

4.1

Dataset

The dataset for their project draws upon two independent sources, composed of
high resolution BCC lesions in ad-dition to a mixture of malignant and benign
skin images.

1.

4.2

4.3

Our first source is the public dataset used in the ”Skin Lesion Analysis
Towards Melanoma Detection” competition released with ISBI 2016.

. The second source used is the International Skin Imaging Collaboration

(ISIC) Archive, the largest online source of dermoscopy images.

Environment

Their model was built with Python and Keras on top of Theano using a
GTX 1080 Ti.

The model was trained using ADAM with a batch size of 4, beta 1 of 0.9,
beta 2 of 0.999, weight decay of 0.0, and a learning rate of 0.001.

With this setup it took approximately 0.125 seconds to process one 480x480
image.

Results

Their model was tested using three different depths: 53, 98 and 152. The
depths were only adjusted in the classification model.

Their best model was at a depth of 152, in which our overall weighted
sensitivity and specificity for detecting BCC from non-BCC was 97% and
96%, respectively.

To effectively judge the outputs of the model, they used four metrics:

1. Sensitivity
2. Specificity
3. Accuracy
4

. Dice coefficient



e The results for their classification architectures is presented in table I.

TABLE I: Depth Comparisons

AC SE SP DI
S3layers 92 98 93 B8
08 layers 89 MO8 94 85
152 Layers 93 97 9% B%

e In figure 3 they plot their receiver operating characteristic graph for each
model, demonstrating that their model with a depth of 152 performed
slightly better than their 2 other models. They found that around epoch
45 their results tended to plateau. The AUC values for these curves are
0.96, 0.95, 0.96, respectively.

Receiver operating characteristic
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Fig. 3: ROC for models at 3 different depths
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5 Discussion

5.1

5.2

Limitations

First was acquiring access to a high quality dataset for BCC dermoscopy
images, and dermoscopy images in general. Compared to models like
Imagenet, which have millions of training images, they struggled to find
several thousand images. This problem is not unique, and numerous other
manuscripts, models based on medical imaging almost always suffer from
either a lack of images or a low quality dataset.

Due to the restrictions of their environment, re-sizing their images to
480x480 allowed them to train their models within a reasonable amount
of time, and within memory limits of their GPU. However, down-sampling
their image resulted in a loss of quality and features that their NN is no
longer able to pick up.

In the future, model optimization such as using non-fully connected layers
in the beginning of their etwork or reducing the dimensionality of their
etwork would allow them to keep the images at a higher resolution and
train in a reasonable time frame.

Clinical Accuracy

The last limitation of their model is their restricted un-derstanding of the
clinical accuracy vs. quantitative dataset accuracy. The most common
reason that research, just like the one presented in this paper, is not used
in a clinical setting is because the metrics used to analyze a model do not
fully encompass what we define as clinical accuracy.

Their research shows an accuracy of 93%, however they cannot accurately
report what the actual clinical accuracy is. Imagining their research was
integrated into a clinical software tool, they may find that dermatologists
may not use our software. The reason being, the model may be very good
at diagnosing BCC in a lesion that is already obvious to an experienced
dermatologist, but has much more false positives in complicated cases,
where most of the dermatologists efforts are spent. Consider the following
equations:
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where:

— Two is the total time spent working without a model

— T, is the time spent diagnosing
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— T; is the time spent treating

— Twm is the total time spent working with a model

Typ is the extra time spent reviewing false positives

— T, time saved using the model

Thus, they define clinical accuracy to be an accuracy that results in a
statistically significant difference between T, and T, .
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6 Conclusion

e In this paper They proposed a novel method for analyz-ing BCC der-
moscopy images.

e By using deep ResNets their experimental results show that, on paper,
the model could be used in practice as a screening tool.

e They built their model into two stages: segmentation and classification.

e Their segmentation model uses an FCRN capable of identifying a lesion
in an image and eliminating extraneous information.

e Their classification model then takes this segment and analyzes it using a
deep residual network 152 layers deep.

e This model works seamlessly from a single input image to a final output
without any requirement of manual work.

e To improve upon this model in the future, researchers can employ more
data to switch from binary classification to a categorical model, retrain the
model on optical images, and possibly employ the use of transfer learning,
drawing upon models pre-trained on different textures.
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8

8.1

Summary

Motivation

e There is little research on BCC and neural networks, and the works pro-

8.2

8.3

vided have been insufficient thus far. To their knowledge, there is no pre-
vious work done on residual neural networks being trained on a dataset of
BCC images. In this paper, they present, the first attempt to solve this
problem. By using a fully convolutional residual neural network (FCRN)
for segmentation and a deep residual neural network (NN) for classifica-
tion, we seek to automatically diagnose a malignant lesion, providing a
starting mode that can one day be used on images taken with an op-
tical camera. Their inspiration is drawn from Lequan, et al., paper on
Automated Melanoma Recognition in Dermoscopy Images via Very Deep
Residual Network. They base their work on improving upon the tech-
niques they used

Framework

They built their model into two stages:

— Segmentation

— Classification

Their segmentation model uses an FCRN capable of identifying a lesion
in an image and eliminating extraneous information.

Their classification model then takes this segment and analyzes it using a
deep residual network 152 layers deep.

This model works seamlessly from a single input image to a final output
without any requirement of manual work.

Arguments

Those familiar with dermoscopy may make the argument that an addi-
tional preprocessing step is required due to the surrounding structures
such as hair, moles, or droplets of water created when preparing the der-
moscopy images. As seen in in Figure 1,
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(b} Outpast

Fig. I: Segmentation Model with Hair Ocelusion

an original BCC lesion is shown next to the output of their segmentation
model demonstrating no irregularities when part of the lesion was occluded
by hair follicles. Similar images in their dataset also suffered no loss in
accuracy with occlusion, as they believe that their NN model is capable
of interpreting extraneous information as non-pertinent to the lesion at
hand.

8.4 Challenge
8.4.1 Solved Challenges

1. Simple neural networks that achieve a modest level of accuracy are not
difficult to create; however, a system that can achieve an accuracy viable
for clinical use is quite challenging and depends on several features such
as: vari-ations between size and shape, contrast between where the lesions
begin and end, and artifacts such as hair color and veins

2. In many deep CNNs the gradient tends to be unstable and is a fundamental
issue in gradient based learning. To avoid these issues, their model draws
upon the work done by He, et al., on Residual Neural Networks (Resnets).

3. Due to the nature of their dataset being a combination of two different
databases, their first step was to normalize our inputs by resizing our der-
moscopy images down to 480x480. This has the added benefit of allowing
them to decrease training times by increasing their batch size, due to the
increased free memory space

4. Due to their utilization of Keras and Theano instead of Caffe, there were
several steps which had to be performed before their model could be uti-
lized. The main focus was recognizing how Caffe and Keras differ in terms
of model network setup. The most pertinent difference was that many pa-
rameters do not translate directly over from Caffe to Keras. For this they
used either defaults or their best intuition for rebuilding the model e.g.
using a Glorot Uniform Initializer (a.k.a Xavier uniform initializer) for
their deconvolution layers.
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8.4.2 Challenges Not Solved

1.

8.5

Acquiring access to a high quality dataset for BCC dermoscopy images,
and dermoscopy images in general. Compared to models like Imagenet,
which have millions of training images, they struggled to find several thou-
sand images. This problem is not unique, and numerous other manuscripts,
models based on medical imaging almost always suffer from either a lack
of images or a low quality dataset.

Due to the restrictions of their environment, re-sizing their images to
480x480 allowed them to train their models within a reasonable amount
of time, and within memory limits of their GPU. However, down-sampling
their image resulted in a loss of quality and features that their NN is no
longer able to pick up.

. The last limitation of their model is their restricted un-derstanding of the

clinical accuracy vs. quantitative dataset accuracy. The most common
reason that research, just like the one presented in this paper, is not used
in a clinical setting is because the metrics used to analyze a model do not
fully encompass what we define as clinical accuracy.

. Model optimization such as using non-fully connected layers in the begin-

ning of their etwork or reducing the dimensionality of their etwork would
allow them to keep the images at a higher resolution and train in a rea-
sonable time frame.

Results

Their research shows an accuracy of 93%. Their best model was at a
depth of 152, in which our overall weighted sensitivity and specificity for
detecting BCC from non-BCC was 97% and 96%, respectively.

17



