
Software Design Document

Road Eye

Faculty of Computer Science - Misr International University

Mohamed Alaa, Mohamed Eleish, Nour El Din tarek, Omar Maysor

Supervised by
Dr Soha A. Ehssan & Eng. Youssef Mobarak

May 14, 2019

1 Introduction

1.1 Purpose

The purpose of this software design document is to provide a full description of the ”Road Eye”
system architecture, it will describe the functionality of each sub-system in a detailed manner, it will
also show the communication between the sub-systems and the interaction between the components
in the same sub-system.

1.2 Scope

”Road Eye” aims to develop a deep-learning approach as a mechanism to automate the localization
of road anomalies like bumps, potholes, etc, which is a very time and man power consuming process
to achieve manually. This approach will make use of crowd-sourcing to achieve both highest and
fastest data collection and propagation rate, such data will be used by users through both a web and
mobile application to enhance navigation by determining the best and fastest route based on the
road quality which can be very helpful for both ordinary users and drivers working for either public
or private sectors like Uber and Careem. The system can also be used by the General Authority
for Roads to monitor the condition and usability of the roads.

1.3 Overview

It’s undeniable that road anomalies like bumps, potholes, poor conditions and unexpected events
like accidents and road blocks became very common, those conditions or road anomalies can effect
both the safety of the driver and the condition of the vehicle as it can damage suspension systems,
tires and overall vehicle condition. ”Road Eye” is a project focused on detecting and collecting data
about potholes, speed bumps, manholes and rumble-strips through crowd-sourcing by developing
an anomaly detection system mounted to vehicles and also developing an analysis system that make

1



use of the collected data to generate useful information and statistics that will be used through a
mobile app and a website to enhance navigation by determining the best and fastest route based
on the road quality.

1.4 Definitions and Acronyms

• GSM Global System for Mobile communications

• Python An interpreted high-level programming language for general-purpose programming.

• OpenCV (Open Source Computer Vision) is a library of programming functions mainly
aimed at real-time computer vision.

• GPS The Global Positioning System.

• Raspberry Pi 3 B+ Small single-board computer

2 System Overview

2.1 Overview

In order to have a data collection and detection system that provides consistent data regardless of
the vehicle type, a hardware consisted of Raspberry Pi 3 B+, Camera along with both GPS and
GSM modules will be used for the purpose of detecting and collecting data categorized as follows,
Potholes, Speed Bumps, Manholes, Rumble Strips. A software will be developed using python
programming language, openCV and Deep Neural Networks to work with this set of hardware to
develop an embedded system installed to the driver’s vehicle to serve as a data collection system for
both the mobile app and the website available to the public, they shall serve as a portal for users
to be able to determine the best route based on the collected data and will also allow the preview
of such data..

2



Figure 1: System overview

3



The system composes of 3 main stages as follows:

2.1.1 Data Acquisition

The hardware consists of camera, GPS, and a raspberry pi 3 B+. This set of hardware is mounted
to vehicles to collect data. The hardware is responsible for the acquisition of camera frames and
GPS data through the corresponding hardware.

2.1.2 Data Processing

The frames from camera are then encapsulated with time stamp, geo-location, and speed value,
then cached to a SqlLite local database on the raspberry pi in order to be processed by another
thread later when the thread is not busy. When an anomaly is detected it is also saved to the local
database and then uploaded to the server after redundancy removal process has been executed on
the batch to be uploaded.

2.1.3 Data Presentation

The website displays useful road statistics and condition to users, as how many anomalies are
detected in a road or route along with their details, it also provided the overall condition of a single
road or a route (multiple roads). For the mobile application the user can search for a road, enter
destination and get all possible routes to the destination, how many anomalies in the road and it’s
condition. During navigation the user will also receive real-time warnings for anomalies in his way.

4



3 System Architecture

3.1 Architectural Design

3.1.1 Vehicle System

Figure 2: Layered architecture for the vehicle module

Our layered architecture approach consists of three layers. Application logic (service) layer, busi-
ness logic layer and data logic (data access) layer.

Service layer is responsible for services of anomaly detection, road condition detection and up-
load data but no actual business login which happens at business logic layer.

Our business logic here consists of classifying data. Moreover, data access layer is responsible
for fetching data from modules, caching and uploading data to the server.

Service layer is at the highest level beneath it exists business logic layer and data access layer
so only service layer can communicate with the other layers and the other two layers can’t commu-
nicate with service layer or communicate with each other.

In previously mentioned layers the components of each layer also is not allowed to communica-
tion with each other.

5



Such separation of concerns was intended to ensure scalability with minimum changes to the
base code.

3.1.2 Mobile App

Event Driven Architecture was chosen as the main architecture of the mobile app to reduce the
coupling between the components of the system and ensure that all the components present at the
same time (ex: multiple fragments) are all in the correct state and populated with the correct data.
Events are published and propagates through the app components using the EventBus and each
components that is listening for such event acts as specified.

Figure 3: Event Driven architecture for the Mobile App

6



3.1.3 Web App

Figure 4: MVC architecture for the web App

3.2 Decomposition Description

3.2.1 Class Diagram

7



Figure 5: Vehicle module class diagram - part 1

8



Figure 6: Vehicle module class diagram - part 2

9



3.2.2 Sequence Diagram

Figure 7: Sequence diagram showing the sequence of the anomalies detection system running on the raspberry pi

10



3.3 Design Rationale

3.3.1 Vehicle System

Considering the fact that the logic can be separated clearly into three main parts, application
logic, business logic and data logic. So in the light of the previous conclusion layered architecture
approach has been chosen.

3.3.2 Mobile App

The mobile app sub-system is based on Model-View-ViewModel (MVVM) design pattern along with
event-driven approach, ViewModel backs up and simplify the event driven approach as it exposes
streams of events to which the Views can bind to. Like this, the ViewModel does not need to hold
a reference to the View anymore.

3.3.3 Web App

It has become a standard to use MVC as the architecture for the web development in backend and
also lately in the frontend (main frontend frameworks tend to use MVVM instead of MVC) and
that’s due to the different types of views, JSON in case of API services or web pages in case of
server rendered web sites, also the controllers is quite suitable for backend development as each
controller represents an end point with repositories as an extension to the controllers to hold the
business logic.

11



4 Data Design

4.1 Data Description

Figure 8: Database schema used

12



4.2 Data Dictionary

4.2.1 Anomaly

• RoadID refers to a specific road in table Road where the anomaly is located.

• TypeId refers to the anomaly type in AnomalyType table (ex: id = 1 means it is a Pothole).

• Latitude latitude coordinate of the anomaly.

• Longitude longitude coordinate of the anomaly.

• FrameUrl url of the captured frame containing the anomaly.

• Confidence confidence of the classification model for this detection.

4.2.2 AnomalyType

• Name describe type of the anomaly (ex: Pothole)

• Weight represents the impact of the corresponding anomaly type on the road condition.

4.2.3 Road

• ApiId corresponds to the actual place id in the Google Places API.

• Name name of the road/

• ConditionId refers to the road condition in Condition table (ex: id = 1 means it is in a Very
Good condition).

4.2.4 Condition

• Name describes the condition (ex: Very Good)

• Score represents the target score that must be met by a specific road to be able to refer to
this condition or tier.

5 Component Design

5.1 Inception V4 Network

Deep convolutional nueral networks have been central to the largest advances in image recognition
performance in recent years. One example is the Inception architecture that has been shown to
achieve very good performance at relatively low computational cost.

Recently deep convolutional neural networks have been the largest advances in image recog-
nition and object detection fields. For Instance, the Inception architecture which was introduced
in [3] and in its early stages was called GoogleNet and there is 4 implemented versions that has
been shown a steadily and remarkable pace at achieving very good performance at relatively low

13



computational cost.

Inception-V1 was the initiative. Later on Inception-V2 introduced the architecture with batch
normalization added after each convolutional layer. Finally, in the final 2 version there was improve-
ments such as adding additional factorization and make it more tun-able, meaning that there are a
lot of possible changes to the number of filters in the various layers that do not affect the quality
of the architecture. In order to optimize the training speed, layer sizes was tuned carefully in order
to balance the computation between the various model sub-networks that will be explained later on.

For training very deep architectures it is argued that residual connections are of inherent impor-
tance. Since Inception networks tend to be very deep, it is natural to replace the filter concatenation
stage of the Inception architecture with residual connections. This would allow Inception to use all
the benefits of the residual approach while retaining its computational efficiency.

5.2 SeNet

Residual connection were introduced for giving the advantages of utilizing additive merging of sig-
nals both for image recognition, and especially for object detection. However, one of the most
important findings in the Inception architecture that residual connections are not by default nec-
essary for training very deep convolutional models. Moreover, there is an additional component
that helps improving the quality of representations produced by a network by explicitly modeling
the inter dependencies between the channels of its convolutional features, which is the Squeeze-
and-Excitation (SE) block,this mechanism allows the network to perform feature re-calibration,
through which it can learn to use global information to selectively emphasis informative features
and suppress less useful ones.

As for the InceptionV4-SEnet architecture it will be explained in the following figures. Bear in
mind that all the convolutions not marked with “V” in the figures are same-padded meaning that
their output grid matches the size of their input. Convolutions marked with “V” are valid padded,
meaning that input patch of each unit is fully contained in the previous layer and the grid size of
the output activation map is reduced accordingly.

14



Figure 9: The schema for stem of the pure Inception-v4. This is the input part of those network.

15



Figure 10: The schema for 35 x 35 grid modules of the pure Inception-v4 network. This is the
Inception-A block.

16



Figure 11: The schema for 17 x 17 grid modules of the pure Inception-v4 network. This is the
Inception-B block.

17



Figure 12: The schema for 8 x 8 grid modules of the pure Inception-v4 network. This is the
Inception-C block.

18



Figure 13: The schema for 35 x 35 to 17 x 17 Grid reduction A module.

19



Figure 14: The schema for 17 x 17 to 8 x 8 Grid-reduction B module.

20



Figure 15: The schema of the original Inception module (left) and the SE-Inception module (right)

21



Figure 16: The overall schema of the Inception-v4 network. For the detailed modules

6 Human Interface Design

6.1 Overview of User Interface

RoadEye vehicle module detection process is automated and require no user interaction therefor no
user interface or communication methods are needed between the user and the vehicle module, the
data collected by this module is used through the mobile and web apps through the user interface

22



shown and explained in the next two sections.

6.2 Screen Images

6.2.1 Mobile App

Figure 17: Home Idle Figure 18: Search

23



Figure 19: Search and explore Roads Figure 20: Anomaly details

24



Figure 21: Anomalies in route Figure 22: Route details

25



Figure 23: Routes preview Figure 24: Navigation

26



6.2.2 Web App

Figure 25: Landing Page

27



Figure 26: Latest Updated Roads

Figure 27: All Roads

28



Figure 28: Anomalies details

29



7 Requirements Matrix

Figure 29: Requirements Matrix, mapping between functional requirements and the SDD modules

References

[1] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In: 2018.

[2] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. “Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning”. In: CoRR abs/1602.07261 (2016). arXiv:
1602.07261. url: http://arxiv.org/abs/1602.07261.

[3] C. Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2015, pp. 1–9. doi: 10.1109/CVPR.2015.

7298594.

30


