
Software Design Document(SDD)

for

LOCO: Enhancing Indoor IOT Network Design

to support energy Saving

Abdelrahman Samir, Fady Khaled, Rana Muhammed, Samar Saeid.
Supervised by: Dr. Mohamed Elgazzar, Eng. Silvia Soliman

January, 2019

1



1 Introduction

1.1 Purpose of this document

This is an SDD (Software Design Document) describes architecture and system
design of LOCO, a system that aims to enhance Indoor IOT Network Design to
support energy Saving. It details the components of the system, the architecture
used in creating it. How the data is handled and the relations and design
between the data. It also explains the algorithms used throughout the system.
This document explains all these aspects with the help of Class diagrams,ERD
diagrams, Activity diagram and Architecture diagrams.

1.2 Scope

Loco is a web application that aims to help decrease power consumption in
IoT devices and sensors. It is run by admin, and accessed by the architect,
user and auditor. it allows the architect to upload a scanned image that shows
the infrastructure of the place where he is willing to place his IOT devices or
sensors and the system will apply the main process of classification on several
models and the output that the end user will receive will be the most optimum
model recommended by the system.The auditor’s role is the verification part,his
authentications include verifying the image with the right number of devices and
right positions and will verify the result that the user will receive.

1.3 Overview

Internet of Things (IOT), is defined as group of devices that are embedded with
electronics, sensors and software allowing them to be connected to the internet
and receives or sends data. It is widely considered as the future of technology
and electronics. There is an increase in power consumption regardless of the car-
bon footprint resulting from generating electricity. We should be more socially
conscious of our choices, with every device we should do our best to minimize
our consumption. In this project we aim to find the best indoor placement for
several IOT devices by measuring power consumption depending on many fea-
tures such as the average power consumption of each device, network hops per
node and battery voltage of each device and using the measurements to train
the system to recommend the best model with the lowest power consumption.

1. Introduction.

2. System Overview.

3. System Architecture.

4. Data Design.

5. Component Design.

6. Human Interface Design.

2



7. Requirement Matrix.

8. References.

1.4 Definitions and Acronyms

SDD System Design Document

MVC Model View Controller

IoT Internet of Things

ANN Artificial Neural Network

KNN K Nearest Neighbour

2 System Overview

In Loco we have a system that enhances the positioning of IoT devices or sen-
sors, by accurately placing them in a way where the interference between their
ranges and other factors are minimized to extend the battery life of these de-
vices and decrease their power consumption. Loco works in two phases. The
first phase, the devices’ readings are stored in the database and then divided
into training and testing to generate a tested model. The second phase, a floor
map is uploaded. Using multiple algorithms, we randomly place the devices on
the map and get the best set of placement. Finally, we give these sets to the
trained model to generate the best placement for the given devices.

3



Figure 1: System Overview

Figure 2: Block Diagram

4



3 System Architecture

3.1 Architectural Design

Figure 3: System Architecture

3.1.1 Model

Admin, Architect and Auditor models handle the main functionalities of the
users of the system.

Map model handles the generated or uploaded floor-map of the building. it
handles the number of devices and dimensions of the map.

Result model handles the generated best placement of the devices and their
location on the map.

Libraries:
Numpy: library used for multidimensional arrays and matrices.

5



Matplot: It provides an object-oriented API for embedding plots into applica-
tions.
Scikit-learn: This is the library containing the classifier.
Keras: It is a library for dealing with deep neural network.
TensorFlow: It is used for the application of the machine learning in the neural
network.

3.1.2 View

View represents the data user interface. it allows the users to view the data and
manipulate it. Loco has three interfaces one is for the Admin functionalities,
another one for the Architect and the last one for the auditor’s functionalities.

3.1.3 Controller

Controller connects the view with the model. the user sees the view and interacts
with it to make commands. the model then fetches data from database and
updates it to be ready for the view. Admin, Architect and Auditor controllers
handles the requests made by the users.

3.2 Decomposition Description

3.2.1 Class Diagram

Figure 4: Class diagram

6



3.2.2 Inheritance Relationships

Class Architect inherits from class user
Class auditorController inherits from class user
Class AdminController inherits from class user
Class MotionSensor inherits from class Sensor
Class LightSensor inherits from class Sensor
Class Magnetiometer inherits from class Sensor
Class Resultmodel inherits from class RObserver
Class auditorController inherits from class RObserver
Class AdminController inherits from class RObserver

3.2.3

• Class name:User, Concrete.

• List of super classes: None.

• List of sub classes: Architect, Admin Auditor.

• Purpose : To define the basic attributes and methods of user such as his
username and password and the login method and register method.

• Collaboration: To achieve its purpose User class should perform login
process using username and password to ensure security. It will need
to have the classes Architect, AdminController and AuditorController to
inherit from it.

• Attributes: Fname,Lname,username,usertype and password will be string.

• Operation:
setblueprint() it’s argument: username(string),password(string),blueprint(jpg)

3.2.4

• Class name:ANN , Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the artificial
neural network such as number of input layers and number of output
layers and and number of hidden layers and a list of layers and read-
dataset,classifyinput,error computation,learn and test methods.

• Collaboration: To achieve its purpose Device’s class readings are passed
by the Architect class to Ann for further analysis as the mentioned meth-
ods. It will need to have inheritance relationship with Architect class.

7



• Operation:
ReadDataset() it’s argument: Dataset(csv), ClassifyInput() it’s argument:
model(Resultmodel), errorComputation() it’s argument: expectedTarget(List),
Learn() it’s argument: inputdata(list),outputdata(list) Test() it’s argu-
ment: inputlist(list)

3.2.5

• Class name:Device , Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the positioned
devices such as Device Type and Devices’ positions and number of hops
and the average power consumption of all devices and Distance between
devices and distance between every device and the sender device (router)
and cpu power consumption and node type and interference range and
transmission range and getDeviceReadings, getpower, getcpupower,gettype,gettransRan
and getinterferenceRan methods.

• Collaboration: To achieve its purpose Device’s class readings are re-
trieved by the Resultmodel class to be verified by the auditorController
for further analysis as the mentioned methods. It will need to be aggre-
gated by Resultmodel class and inherited from Mapmodel class.

• Attributes: devicetype will be string, and position,hops and avgpow-
erconcumption and distancebetweendevices and cpupower and nodetype
and interference range and transmission range would be integers.

• Operation:
GetDeviceReadings () it’s argument:simulationreadings(csv), getpower ()
it’s argument: simulationreadings(csv), getcpupower () it’s argument: sim-
ulationreadings(csv), gettype () it’s argument simulationreadings(csv), get-
transmRan () it’s argument simulationreadings(csv), getinterferenceRan
() it’s argument simulationreadings(csv)

3.2.6

• Class name:Mapmodel, Concrete.

• List of super classes: None.

• List of sub classes: None.

8



• Purpose : To define the basic attributes and methods of map model
such as which floor and which room and area of the room and height
of the room and length of room and width of the room and number of
attached devices and getdevicesposition, countdevices, getmodelclass and
adddevice methods.

• Collaboration: To achieve its purpose Map model class should specify
all the attached devices in the model and their readings to make a model
with a blueprint and attached devices. It will need to have inheritance
relationship to Device class and needs to be inherited from Architect class
and it also needs to be aggregated from Resultmodel class.

• Attributes: floor,room,area,height,length,width and numberofdevices will
be integers.

• Operation:
getdevicesposition () it’s argument: Device(device), countdevices () it’s
argument: Device(device), getmodelclass () it’s argument: simpulation-
readings(int), adddevice () it’s argument:None

3.2.7

• Class name: Architect, Concrete.

• List of super classes: User.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the architect
such ID and login, logout, register,addnewmodel, update,extractReadings
and uploadblueprint methods.

• Collaboration: To achieve its purpose Architect class it should login
first to be responsible of managing the blueprints and the databases. It
will need to have and association to class User and Architectview class.

• Attributes: ID will be integer.

• Operation:
ExtractReadiings () it’s argument: Bp(blueprint), login () it’s argument:
: None, logout () it’s argument: : None, register () it’s argument: : None,
addnewmodel () it’s argument: None Update () it’s argument: None

3.2.8

• Class name: ArchitectView, Concrete.

• List of super classes: None.

9



• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the architect
view such an object from class Architect and viewArchitect method.

• Collaboration: To achieve its purpose ViewArchitect class it should login
first to be responsible of managing the blueprints and the databases and
visible on the system. It will need to be associated from class Architect
and to have an aggregation with ArchiectController class.

• Attributes: control will be an object from class Architect.

• Operation:
ViewArchitect () it’s argument:control,

3.2.9

• Class name: ArchitectController, Concrete.

• List of super classes: RObserver.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the architect-
Controller such as and object from blueprint,Architect and ArchitectView
classes and UploadBluePrint, extractReadings,login, logout, register and
addnewmodel and update methods.

• Collaboration: To achieve its purpose ArchitectController class it should
login first to be responsible of managing the blueprints ,databases and
users. It will need to have and inheritance to Mapmodel,Ann and blueprint
classes and association relationship to RObserver class and needs to de-
pend on the login interface

• Attributes: print,arch and view will be objects from Blueprint,Architect
and Architectview.

• Operation:
UploadBlueprint () it’s argument: bp(Blueprint), extractReadings () it’s
argument: bp(Blueprint), login () it’s argument: : None, logout () it’s
argument: : None, register () it’s argument: : None, addnewmodel () it’s
argument: None Update () it’s argument: None

3.2.10

• Class name: AdminController, Concrete.

• List of super classes: RObserver.

• List of sub classes: None.

10



• Purpose : To define the basic attributes and methods of the Admin
controller such objects from Admin and Adminview classes and AddUser,
listuser and modifyuser methods.

• Collaboration: To achieve its purpose AdminController class it should
login first to be responsible of managing the users and the blueprint and
needs to depend on the login interface class and an aggregation relation-
ship to adminview class and an association to Blueprint class and finally
an inheritance to RObserver class.

• Attributes: admin,view will be objects from Admin and AdminView
classes.

• Operation:
AddUser () it’s argument: an arraylist of users, addUser () it’s argument:
None, modifyUser () it’s argument: None

3.2.11

• Class name: Admin, Concrete.

• List of super classes: User.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Admin such
ID and AddUser,deleteuser,updateUserinfo, viewuserifo,verifyblueprint,viewblueprint,login,logout,register
and update methods.

• Collaboration: To achieve its purpose Admin class it should login first
to be responsible of managing the users and the blueprint and needs to
an inheritance relationship to User class and an association to Adminview
class .

• Attributes: ID will be integer.

• Operation:
AddUser () it’s argument: an arraylist of users, deleteUser () it’s argu-
ment: (username), updateuserinfo () it’s argument: (username), viewuser-
info () it’s argument: (username), verifyBlueprint () it’s argument: (blueprint),
viewBlueprint () it’s argument: (blueprint), login () it’s argument: None,
register () it’s argument: None, logout () it’s argument: None, update ()
it’s argument: None

3.2.12

• Class name: AdminView, Concrete.

• List of super classes: None.

11



• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Admin such
control which is an object from AdminController and ViewAdmin method.

• Collaboration: To achieve its purpose AdminView class it should login
first to be responsible of managing the users and the blueprint and needs
to be associated from Admin class and an aggregation relationship to
AdminController class.

• Attributes: control will be an object from Admincontroller class.

• Operation:
viewAdmin () it’s argument: (control),

3.2.13

• Class name: auditorController, Concrete.

• List of super classes: RObserver.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the auditor
Controller such as result,Auditor and view and showblueprint, Verify-
Blueprint, VerifyResults,newresult,login, logout,register and update meth-
ods.

• Collaboration: To achieve its purpose auditorController class it should
login first to be responsible of managing the result and the blueprint. It
will need to have and association to class RObserver and an inheritance re-
lationship to Resultmodel,Blueprint classes and needs to depend on iLogin
interface .

• Attributes: Result,Auditor and view will be Objects from Resultmodel,Auditor
and view classes.

• Operation:
login () it’s argument: : None, logout () it’s argument: : None, register ()
it’s argument: : None, VerifyBlueprint () it’s argument: Blueprint(blueprint),
showBluePrint () it’s argument: Blueprint(blueprint), VerifyResults ()
it’s argument: Resultmodel(result), newResult () it’s argument: Result-
model(result)

3.2.14

• Class name: auditor, Concrete.

• List of super classes: User.

• List of sub classes: None.

12



• Purpose : To define the basic attributes and methods of the auditor
Controller such as ID and showresult, VerifyBlueprint, VerifyResult,login,
logout and register and update and newResult methods.

• Collaboration: To achieve its purpose auditor class it should login first
to be responsible of managing the result and the blueprint. It will need
to have and association to class User and an inheritance relationship to
AudtitorView class.

• Attributes: ID will be integer.

• Operation:
login () it’s argument: : None, logout () it’s argument: : None, register ()
it’s argument: : None, VerifyBlueprint () it’s argument: Blueprint(blueprint),
showBluePrint () it’s argument: Blueprint(blueprint), VerifyResults ()
it’s argument: Resultmodel(result), newResult () it’s argument: Result-
model(result)

3.2.15

• Class name: auditorview, Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the auditor
Controller such as control and viewAuditor method.

• Collaboration: To achieve its purpose auditor class it should login first
to be responsible of managing the result and the blueprint. It will need
to be associated from class Auditor and an aggregation relationship to
AudtitorController class.

• Attributes: control will be an object from class AuditorController.

• Operation:
ViewAuditor () it’s argument: : control,

3.2.16

• Class name: Blueprint, Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Blueprint
such as ImageMap and number of Corners and getuserinfoand getmea-
surements methods.

13



• Collaboration: To achieve its purpose Blueprint class should get an
image and a number of corners . It will need to have and inheritence from
class Admincontroller,Architect and auditorController.

• Attributes: ImageMap as a BIN, NofCornerswill be integer.

• Operation:
getmeasurements () it’s argument:None, getuserinfo () it’s argument:classtype

3.2.17

• Class name: Sensor, Concrete.

• List of super classes: None.

• List of sub classes: MotionSensor, Magnetiometer, LightSensor.

• Purpose : To define the basic attributes and methods of the Sensor of
the sensors such as xAxes of every position and YAxes of every position
and SetMeasurements and getposition methods.

• Collaboration: To achieve its purpose Sensor class It will need to asso-
ciated from class MotionSensor, Magnetiometer, LightSensor.

• Attributes: XAxes, XAxes will be floats.

• Operation:
SetMeasurements () it’s argument: : Sensor(sensor), getposition () it’s
argument:Sensor(sensor)

3.2.18

• Class name: LightSensor, Concrete.

• List of super classes: Sensor.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the LightSensor
such as number of sensors and angle and time and light intensity and X
axes and Y axes and detectwindows, getwindowsorientaion, and setposi-
tion methods.

• Collaboration: To achieve its purpose LightSensor class It will need to
have and association to class Sensor

• Attributes: nofSensors will be integer, Angle,time,light-intensity xAxes
and yAxes will be floats.

• Operation:
detectwindows () it’s argument:None, getwindowsorientaion () it’s argu-
ment:None, setposition () it’s argument: : xAxes(float),yAxes(float)

14



3.2.19

• Class name: Magnetiometer, Concrete.

• List of super classes: Sensor.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Magnetiome-
ter such electric quantity and X axes and Y axes and getdoororientaion,
getdoors, and setposition methods.

• Collaboration: To achieve its purpose Magnetiometer class It will need
to have and association to class Sensor

• Attributes: electQuantity,xAxes and yAxes will be floats.

• Operation:
getdoororientaion () it’s argument:None, getdoors () it’s argument:None,
setposition () it’s argument: : xAxes(float),yAxes(float)

3.2.20

• Class name: MotionSensor, Concrete.

• List of super classes: Sensor.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the MotionSen-
sor such as field intensity and Magnetiometer and Light sensor and X axes
and Y axes and getMotion, clustersensors, getroomarea, and setposition
methods.

• Collaboration: To achieve its purpose MotionSensor class It will need to
have and association to class Sensor also needs to aggregate both classes
Lightsensor and Magnetiometer.

• Attributes: fieldIntensity, xAxes and yAxes will be floats and mag would
be an object from class Magnetiometer and light would be an object from
class LightSensor.

• Operation:
getMotion () it’s argument:light(lightSensor),mag(Magnetiometer), clus-
tersensors () it’s argument:Sensors, getroomarea () it’s argument: None,
setposition () it’s argument: : xAxes(float),yAxes(float)

15



3.2.21

• Class name: Resultmodel, Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Result-
model such as model number and ID and an array of devices and an object
from mapmodel and bp and ann and list of observers and model class and
showmap, showoptimalmodel, addObserver,removeobserver,notifyobservers
and classifymodels methods.

• Collaboration: To achieve its purpose Resultmodel class It will need to
associate RObserver, Device ,ResultView,ANN and Blueprint classes.

• Attributes: modelnumber,ID will be an integer, devices array would be
an array and mapmodel which is an object from mapModel and bp which
is an object from blueprint and ann which is an object from class ANN
and a list of RObserver objects and classmodel would be an integer.

• Operation:
showmap () it’s argument:(bp), showoptimalmodel () it’s argument: (Map-
model,ann), addObsevber() it’s argument: (observer), removeObverber()
it’s argument: (observer), notifyObserver() it’s argument:None, classify-
models() it’s argument:None

3.2.22

• Class name: Resultview, Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Resultview
such showmap,showoptimalmodel and control and showmap, showopti-
malmodel, addObserver,removeobserver,notifyobservers and classifymod-
els methods.

• Collaboration: To achieve its purpose Resultview class It will need to
be associated from Resultmodel class and and aggregation relationship to
Resultcontroller class.

• Attributes: showmap,showoptimalmodel will be buttons and control
would be an object from class Resultcontroller.

16



• Operation:
showmap () it’s argument:(bp), showoptimalmodel () it’s argument: (Map-
model,ann), addObsevber() it’s argument: (observer), removeObverber()
it’s argument: (observer), notifyObserver() it’s argument:None, classify-
models() it’s argument:None

3.2.23

• Class name: Resultcontroller, Concrete.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the Resultview
such showmap,showoptimalmodel and showmap, showoptimalmodel, ad-
dObserver,removeobserver,notifyobservers and classifymodels methods.

• Collaboration: To achieve its purpose Resultcontroller class an aggre-
gation relationship to Resultview class is needed.

• Attributes: showmap,showoptimalmodel will be buttons and control
would be an object from class Resultcontroller.

• Operation:
showmap () it’s argument:(bp), showoptimalmodel () it’s argument: (Map-
model,ann), addObsevber() it’s argument: (observer), removeObverber()
it’s argument: (observer), notifyObserver() it’s argument:None, classify-
models() it’s argument:None

3.2.24

• Class name: ilogin, interface.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes and methods of the ilogin such
as Login, Logout and register methods.

• Collaboration: To achieve its purpose ilogin class It will need to be
depended from Architect,auditorController and AdminController classes.

• Attributes: None.

• Operation:
Login () it’s argument:username(String),password(String), Logout () it’s
argument: username(String),password(String), register () it’s argument:
username(String),password(String),usertype(int)

17



3.2.25

• Class name: IDrawBlueprint, interface.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic methods of the IDrawBlueprint such as
getmeasurements, getposition and Draw methods.

• Collaboration: To achieve its purpose IDrawBlueprint class It will need
to be depended from DeviceAdder and BluePrint classes.

• Attributes: None.

• Operation:
getmeasurements () it’s argument:sensor(Sensor), getposition () it’s argu-
ment: sensor(Sensor), Draw () it’s argument: sensor(Sensor)

3.2.26

• Class name: Detectionbehavior, interface.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic method of the Detectionbehaviorsuch as
detectwindows method.

• Collaboration: To achieve its purpose Detectionbehaviorclass It will
need to be depended from LightSensor and Magnetiometerclasses.

• Attributes: None.

• Operation:
detectwindows () it’s argument: None

3.2.27

• Class name: DeviceAdder, Abstract.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attributes methods of the DeviceAdder
such as blueprint, device and addDevices, getmeasurements, getposition,
Draw methods.

18



• Collaboration: To achieve its purpose DeviceAdder class It will need
to depended from IDrawBlueprint interface and associated with Device
classe.

• Attributes: None.

• Operation:
getmeasurements () it’s argument:sensor(Sensor), addDevices () it’s argu-
ment: Blueprint(blueprint),Device(device), getposition () it’s argument:
sensor(Sensor), Draw () it’s argument: sensor(Sensor)

3.2.28

• Class name: RObserver, Abstract.

• List of super classes: None.

• List of sub classes: None.

• Purpose : To define the basic attribute and method of the RObserver
such as subject and update method.

• Collaboration: To achieve its purpose RObserver class It will need to be
depended from auditorController, AdminController and Architectclasses.

• Attributes: Resultmodel will be an object from Resultmodel.

• Operation:
update () it’s argument: None

3.2.29 Activity Diagram

Figure 5: Activity diagram

19



3.2.30 Sequence Diagram

Figure 6: System sequence diagram

20



Figure 7: Generating blueprint sequence diagram

Figure 8: Auditor verifying results sequence diagram

21



3.3 Design Rationale

4 Data Design

4.1 Data Description

Figure 18: ERD diagram

user: this table has user id, fname, lname, username, password id-usertype
as we have three different types of user (Admin, Architect and Auditor).
user-type: it has id and name to differentiate between user types.
utype-attributes:it has id, id-user-type and utype-options allowing us to know
the different options of each user type.

22



utype-value: it has id, value and foreign keys id-user id-utype-attribute. value
gives us the value of each user type attribute.
utype-options:it has id, option name and the datatype assigned to each user
type option.

device:this table has the basic information of the device. it has id, name and
foreign key id-device-type as there are many types of devices.
device-type: it has id and name to differentiate between device types.
devi-type-attribute:it has id, foreign keys id-devtype-options and id-devtype,
allowing us to know the different options of each device type.
devi-type-value: it has id, value and foreign keys id-device id-devtype-attribute.
value gives us the value of each device type attribute.
devi-type-options:it has id, option name and the datatype assigned to each de-
vice type option.

magnetometer:it has id, x-cor, y cor and elec-quantity. These readings allow
us to store each reading of each installed magnetometer and know the orienta-
tion of each door.
light-sensor:it has id, x-cor, y-cor to get its location. it has light intensity, angle
and time which are the readings that help us know the location of windows and
doors.
motion-sensor:it takes id, x-cor, y-cor to know the location of each sensor. it
also has intensity to record the variation in its readings.
sensor-map: This table is responsible for storing all the obtained information
from the sensors and obtain a map from them. it has id, and foreign keys:
id-light, id-motion and id-magnet.

model: This table has the data of each model of devices inserted for train-
ing and testing. It has id, no-hops, pwr-consumed, class, tx-range, it-range and
foreign key id-device to know which devices are in this model.
blueprint:it has id, id-sensormap of the sensors generated map, blue-image of
the blueprint/floor-map and u-id to tell which user inserted this blueprint.
map:This table stores the system recommended placement of the devices. It has
id, area, room, length, width. Foreign keys model-id of the model of devices
and blue-id of the blueprint.

4.2 Data Dictionary

Reliability is achieved by using singleton design pattern.

Maintainability is achieved by using Entity Attribute Value Model(EAV) in
user classes (User, User-Type, Utype-Options, Utype-Attributes, Utype-Value),
this allows the addition of more types of hosts in the future. EAV is also used in
device classes (Device, devi-type-atrribute, devi-type-option, devi-type value).

23



Portability is achieved by using Model View Cotroller (MVC) design pattern.

5 Component Design

5.1 Pre-processing

In this phase we prepare the models we are going to train our model with, this
happens through applying a reasonable number of experiments of IOT devices
in different placements and using the results to build a training and testing
dataset for the model that will be used in classification later on.
And also it includes the preparation of the input image by converting it to
greyscale image using cv2Color and determining the x and y coordinates of
each node to be ready for feature extraction.

5.2 Feature Extraction

In this phase our features are already set to be used as we have all the required
features in the previously prepared models so all we need to do is arrange them
in the proper way and labeling them according to our threshold to make the
dataset ready for training and testing usage.

5.3 Classification

5.3.1 ANN

In this phase we use an ”Artificial neural network algorithm for classification
and we also try another classifiers (knn and Svm) and compare the results based
on accuracy,recall and precision.

The ”Artificial neural network” classifier is decomposed of:

A neuron with label J receives an input

pj(t)

It receives it from predecessor neurons consists of the following components:

An activation :
aj(t)

the neuron’s state, depending on a discrete time parameter.

Possibly a threshold :

24



θjθj

which stays fixed unless changed by a learning function.

An activation function:

aj(t+ 1) = f(aj(t), pj(t), θj)

And an output function:

oj(t) = fout(aj(t))

The propagation function computes the input to the neuron j from the
outputs of predecessor neurons and typically has the form:

pj(t) =
∑
i

oi(t)wij

When a bias value is added with the function, the above form changes to
the following:

pj(t) =
∑
i

oi(t)wij + w0j

Figure 9: feed forward network

Learning rule:
The learning rule is a rule or an algorithm which modifies the parameters of the
neural network, in order for a given input to the network to produce a favored
output. This learning process typically amounts to modifying the weights and
thresholds of the variables within the network.

Backpropagation:

25



A DNN can be discriminatively trained with the standard backpropagation al-
gorithm. Backpropagation is a method to calculate the gradient of the loss
function (produces the cost associated with a given state) with respect to the
weights in an ANN.

The weight updates of backpropagation can be done via stochastic gradient
descent using the following equation:

wij(t+ 1) = wij(t) + η
∂C

∂wij
+ ξ(t)

5.3.2 KNN

In the classification phase, k is a user-defined constant, and an unlabeled vector
(a query or test point) is classified by assigning the label which is most frequent
among the k training samples nearest to that query point.

A commonly used distance metric for continuous variables is Euclidean dis-
tance. For discrete variables, such as for text classification, another metric can
be used, such as the overlap metric (or Hamming distance). In the context of
gene expression microarray data, for example, k-NN has also been employed
with correlation coefficients such as Pearson and Spearman.Often, the classifi-
cation accuracy of k-NN can be improved significantly if the distance metric is
learned with specialized algorithms such as Large Margin Nearest Neighbor or
Neighbourhood components analysis.

The 1-nearest neighbor classifier:
The most intuitive nearest neighbour type classifier is the one nearest neighbour
classifier that assigns a point x to the class of its closest neighbour in the feature
space, that is:

C1nn
n (x) = Y(1)C

1nn
n (x) = Y(1)

Figure 10: KNN flow chart

26



Figure 11: KNN Algorithm

27



As the size of training data set approaches infinity, the one nearest neighbour
classifier guarantees an error rate of no worse than twice the Bayes error rate
(the minimum achievable error rate given the distribution of the data).

The k-nearest neighbour classifier can be viewed as assigning the k nearest
neighbours a weight

1/k1/k

and all others 0 weight. This can be generalised to weighted nearest neigh-
bour classifiers. That is, where the ith nearest neighbour is assigned a weight

wniwni, with

n∑
i=1

wni = 1

n∑
i=1

wni = 1.

An analogous result on the strong consistency of weighted nearest neighbour
classifiers also holds.

Cwnn
n Cwnn

n {wni}ni=1{wni}ni=1.

Subject to regularity conditions on the class distributions the excess risk has
the following asymptotic expansion

RR(Cwnn
n )−RR(CBayes) =

(
B1s

2
n +B2t

2
n

)
{1 + o(1)},RR(Cwnn

n )−RR(CBayes) =
(
B1s

2
n +B2t

2
n

)
{1+o(1)}

for constants B1 and B2 where:

s2n =

n∑
i=1

w2
niandtn = n−2/d

n∑
i=1

wni{i1+2/d − (i− 1)1+2/d}tn = n−2/d
n∑

i=1

wni{i1+2/d−(i−1)1+2/d}

5.4 Result Generation

In this phase we Generate our result which is the optimum placement recom-
mended for the IOT devices ,this happens by trying a number of models on the
given infrastructure and classifying each model of them until finding an opti-
mum model ,if no optimum model is found between them the models generation
process restarts.

6 Human Interface Design

6.1 Overview of user Interface

As loco has three different users, it also have three different interfaces with
different functionalities. However, they all share the logging interface and the
logout button. Logging is done by entering the username and password in the

28



text fields then pressing the login button. all users will have a notification but-
ton and a logout button.
If the user is an Admin, they will have a list of all existing users and all existing
buildings. each one with an edit and a delete button. Admin will have two
buttons one called Add user which will take them to another page with text
fields to enter the name of the new user and a drop-down menu to select the
user’s type and a save and a return button. The other button is called add
building, it allows the admin to add new building by entering the project’s id
in a text field and then press a save button.
Architect will have navigation menu one leads to a page where they can upload
a data-set and split it. Another to upload device’s info through text fields and
save through a button. last one is to upload the floor-map/blueprint and upload
its information through text fields and save through a button.
Auditor will have side navigation menu with a list of all blueprints and their
state. upon clicking on them auditor will have new page that views the floor-
map and radio buttons to approve or disapprove the map.

6.2 Screen Image

These are Wire-Frames of some of the pages.

Figure 12: Logging panel

29



6.2.1 Admin

Figure 13: Add User

Figure 14: Admin lists

30



6.2.2 Architect

Figure 15: Uploading floor-map

31



6.2.3 Auditor

Figure 15: auditor viewing all maps

Figure 16: Auditor approving a map

32



6.3 Screen Objects and Actions

6.3.1 Buttons

Figure 17: Admin’s add user or buildings buttons

Figure 18: logging out button

Figure 19: Notification button

6.3.2 Drop-down List

Figure 20: Building drop down menu

6.3.3 Navigation Menu

Figure 21: Architect’s side navigation menu

33



7 Requirements Matrix

34



References

[1] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural
network (ann) modeling and its application in pharmaceutical research,”
Journal of pharmaceutical and biomedical analysis, vol. 22, no. 5, pp. 717–
727, 2000.

[2] P. Soucy and G. W. Mineau, “A simple knn algorithm for text categoriza-
tion,” in Proceedings 2001 IEEE International Conference on Data Mining,
pp. 647–648, IEEE, 2001.

[3] K. M. Desai, S. A. Survase, P. S. Saudagar, S. Lele, and R. S. Singhal, “Com-
parison of artificial neural network (ann) and response surface methodology
(rsm) in fermentation media optimization: case study of fermentative pro-
duction of scleroglucan,” Biochemical Engineering Journal, vol. 41, no. 3,
pp. 266–273, 2008.

[4] T. Srivastava, “Introduction to knn, k-nearest neighbors : Simplified,” Mar
2018.

[5] V. Paruchuri, “K nearest neighbors in python: A tutorial,” Feb 2018.
(1)

(2)
(3)
(4)
(5)

35


