Software Design Document for Computer-aided
Simultaneous Interpreting Software

Abdelrahman Ashraf
Ahmed Sameh
Mostafa Mahran
Wessam Ahmed

Supervised by

Dr. Ashraf Abdelraouf
Eng. Nada Shorim

March 2019

1 Introduction

1.1 Purpose

This software design document purpose is to fully describe the architecture of
our Simultaneous Interpreting system. Our system depends on multiple glos-
saries provided by Al-Alsun concerning multiple domains from medicine to ter-
rorism war. This document will explain in details, the components of the system
represented in the block diagram, the ow of the project with sequence diagram,
the data handling in the ER diagram also the implementation of the project
and its development will be shown in the class diagram . This software design
document (SDD) is, therefore, intended for the stakeholders and developers of
the our system: Al-Alsun students and professors and the simultaneous inter-
preters as a whole. This document is also presented as a part of a graduation
project at Misr International University (MIU).

1.2 Scope

The system described in this document builds on existing standards set by other
language translation and interpretation software available on the market. It pro-
vides benefits for users in the Middle East and North Africa region through the
use of advanced methods for context/domain specification in Arabic (and En-
glish) text. The accuracy of translation depends on the semantic understanding
of words in context and not vocabulary translation alone through the use of a
dictionary. Optimization benefits are gained by minimizing the number of terms
the system has to look through in order to arrive to an accurate translation,
resulting in cost savings. The system can be added to an existing network of
components that perform tasks it is dependant on or exist independently, the
limitations that drive this choice are based on implementation and network con-
figuration, as it can exist solely to provide users with a display for contextual
extraction or translation as well as domain specification.

1.3 Overview

Language interpreters rely on a number of methods for the easy look-up and
translation of words, from glossary search engines to speech-to-text transcrip-
tion software. The increasing complications that come with the use of these
software makes their adoption harder to achieve on a wider scope, so their use
is limited to diminishing groups within the language services industry. This doc-
ument will explore the use of an artificially intelligent computer system for the
transcription, semantic (natural) understanding, and translation of live speech
using proven methods. The system will see usage within the Alsun department
at the Misr International University, as such, its completion is subject to the
the work of both the Computer Science and Alsun departments. The Alsun
department will be responsible for gathering a glossary of terms in both English
and Arabic that will be used by the system for translation as well as natural
understanding. As such, this document will provide a road map for fulfilling
the requirements laid out by the Alsun department at the Misr International
University.

1.4 Definitions and Acronyms

Table 1: Definitions and Acronyms

Term Definition

Software Design Document (SDD) | software
design information.

Used as the primary medium for communicating

of natural-language
processing in artificial intelligence that

NLU deals with machine reading

Natural language understanding is a subtopic

comprehension. Natural-language understanding
is considered an Al-hard problem.

NLTK

Natural Language Toolkit is a platform used for building
Python

programs that work with human language data for
applying in

statistical natural language processing (NLP

NLP

Natural language processing is a subfield of computer
science, information
engineering, and artificial intelligence concerned

with the interactions between
computers and human languages.

2 System Overview

In order to achieve the most accurate interpretation, the system has to do
multiple tasks first from pre-processing and classification, also using the bag of
words approach. The pre-processing part is very essential as it happens on two
types of data. First we do the normalization and stemming on the input voice
when converting it to text to achieve the most accurate speech to text conversion,
specially in Arabic as it is a very difficult language to understand while listening
to. After that the pre-processing part is done also on the glossaries on the
database and the converted text from the speech to make the glossary look-up
and the comparison of words much easier. Also there is a synonym matching
methodology we are doing that we create an array of synonyms for each terms
to achieve more accuracy and more easier lookup from the glossary.

View Layer

¢« ¢

Control Layer

Text Classification Glossary Lookup

Input Text Input Text

Pre-Processing Pre-Processing

Normalization of Normalization of
words words

Feature U

Bag of words
(Term Frequency times
Inverse Document
Frequency)

Synonym Matching

Clisgimm
o, 5 L
Organizaions
JL
Data Acces Layer o
|1
Permissions. Admin Interpreter Expert Data Entry
Add new domain v ‘ v v
Add new glossaries “ ¢ ¢
Start an interpretation session v v ‘ v
View all users Log J
Assign roles to users V ‘
View own log “ J ‘ “

Figure 1: Block Diagram

3 System Architecture

3.1 Architectural Design

For the Architectural Design, based on the analysis of the functional and non-
functional requirement, the system was designed in a way that would insure the
MVC system architecture as shown below:

3.1.1 View

It is responsible for the presentation of data and representing the User Inter-
face(UT). We have two different interfaces one is responsible for Admin opera-
tions and the other one is responsible for representing the core part including

View User Function Interface

Textinput N”;i;‘f‘;l;‘;‘:‘“" Stemming Glossary look-up File upload
Controller -

Speech recognition Speech-to-text transcription

(Pandas
Model SWM SOl - Sci-kit Learn

Numpy

Data Access Layer

Database

Figure 2: Software Architecture Diagram

speech to text and terms extraction from the text.

3.1.2 Controller

It is responsible for binding the view and model. The interactions and requests
made within the view are taken and sent to the database to fetch data with the
use of models then it forward data to the view again to be shown. Some of the
controllers we have are: the user controller that deals with the interpreter and
how they interacts with the system, also the admin controller which controls
how the admin interacts with the system and how they give and allow access
for other user. Moreover the controller controls multiple functionalities in the
system like the input of the text and pre-processing done on it, the glossary
look up to extract the relevant terms in the text and other similar tasks.

3.1.3 Model

The interpreter and expert models deals with simultaneous interpreters that
will interact with the system either by using the main interpreting functionality
or add and extract data from the database.

Algorithm:

We use the SVM classification algorithm and specially the linear kernel part of
it as it is very efficient in working with text also it scales better when working
with larger samples of data. Basically the SVM classifier takes the training data
and plot depending on the number of the classes their features on the plane and
draw a line to separate the classes from each other, then when a new text input
comes it extracts its features and put them on the plane to find the best class
or nearest one to this text.

Libraries:

We use the numpy library for handling of the array in python.

The Sci-Kit learn library which contains the classifier we are using in our system
And pandas library for data manipulation and analysis.

3.2 Decomposition Description
3.2.1 System Sequence Diagram

Each step that occurs across all subsystems to achieve text analysis is described
in the figure below (Fig. 3).

Input Text

v

Normalization

|
|
|
|
|
|
|
|
|
|
Stemming 1
> |
! |
H Count :
' Vectorizer I
! — |
|
! |
! Tfidf Transformer |
4 |
I
|
i | svm.predict(|
1 I features) |
i | |
' Result i] |
.. N |
1 | :
! ! Save Text Domain | |
|
| l | |
! ' Saved Successiully| |
I I —— S |
i | ! Creately
| ‘

Figure 3: System Sequence Diagram

3.2.2 User Authentication Sequence

Rationale: The user should register for an account before being able to
use the application.

Input: name, e-mail, password.
Output: Validation response.

Priority: Medium. Each user must have an account and become assigned
a role before being able to use the application.

www.creately.com « Online Diagramming

ReaisterController AuthenticatesUsers MySQl DB

Registration Form

validateRegistration($request)

7,

register($request)
s?ndRegisterRespnnse(smessage)

Redirect()

iagram

Registration Sequence Di

Figure 4

Log-in Form LoginController AuthenticatesUsers MySOL DB

User

Redirect()

\J

login($request)

A

validateLogin($request)

Eloguent ORM Query

>

: J sendLoginResponse($request)
i mmmmmmmemmeemmmememmceeeeslhie e e s eee e e e meee—sfhe e me e e mmeme—— e ——————— -

Figure 5: Login Sequence Diagram

3.2.3 Analyze Text Sequence

e Rationale: The user can input text to the system in the form of plain text
or via a third-party-enabled speech-to-text module and receive a collection
of terms in response, along with their corresponding translation.

e Input: Text, or audio speech.
e Output: Terms obtained via database look-up.

e Priority: High. This is an important functionality of the same.

Upload Form Transcript Controller Transcript Model MySQL DB

User
3 Redirect() : :
analyze($request) _ :
analyzeText($terms) :
split_words($terms, 2) :
: et Eloquent ORM Query
Eloguent ORM Response
| oo Bt
: redirect($terms) i
VRS SRPRRS NUJRYE ity A,

Figure 6: Analyze Transcript Sequence Diagram

3.2.4 Upload CSV Sequence

e Rationale: The user can upload terms in the form of CSV (comma-
separated values) files in order to input terms into the system if they
have the correct permission.

e Input: CSV file.
e Output: None.

e Priority: Medium. This is a functionality afforded to a select collection of
users of the system.

10

Upload Form JTermController Jerm Model

User
i

Redirect()

store_bulk($request)

create()

Eloquent ORM Query

MySQL DB

Eloguent ORM Response

Figure 7: Upload CSV Sequence Diagram

3.3 Design Rationale

As mentioned previously, we have used Model-View-Controller (MVC) as our
architecture as it helped us separate the functionality and data of our system
from the presentation. So, we can easily make modifications, re-use and optimize
functionality part as it is our core. Also the software we are developing efficiency
and accuracy is a very important aspect of it so it will be very sensitive with
data so this should be developed in a very accurate and efficient way.

3.3.1 Possible Algorithms

There were so many alternative algorithms that we could have used like decision
trees and naive bayes that are generally very good for text classification.

Naive Bayes: It works on conditional probability. It calculates the probabil-
ity of the input relative to some decisions that was previously taken. It is well

suited when the input has large number of dimensions.

Decision Trees: It is a decision support tool that uses a tree-like model of

11

Ll

decisions and their possible consequences, including chance event outcomes, re-
source costs, and utility. It is one way to display an algorithm that only contains
conditional control statements.

SVM: Linear SVM is given a set of train data which belong to a certain class to
find an optimal separating line. It tries to maximize the distance between each
class to avoid misclassification. Then a test data are given to be classified to
one of the classes formed before[5].

We have chooses the linear SVM as our classifier as after several experiments it
was found out that the SVM gave the best result and most accurate with the
highest f-measure which is technically the mean between the precision and the
recall score.

3.3.2 Frameworks

There are multiple frameworks that we have used like Django and Laravel frame-
works for PHP to make the transition from the python to the web app easy to
maintain and scalabale.

PHP Laravel: Laravel is a free, open-source PHP web framework, intended
for the development of web applications following the modelviewcontroller ar-
chitectural pattern. It was mainly used for the creation and maintaing of the
web applicataion.

Django RESTful API: Django REST framework is a powerful and flexible toolkit
for building Web APIs. Django is a high-level Python Web framework encour-
aging rapid development and pragmatic, clean design. A web application frame-
work is a toolkit of components all web applications need. Meaning that we the
help of Django we can integrate out python code which contains the machine
learning part and text classification into the web app with ease.

12

4 Data Design

4.1 Data Description

Figure 8: System ERD

13

4.2 Data Dictionary

Table 2: Data Dictionary

Attributes: ID, domain.

Domains This table holds the information that specifies
what domain a term belongs to.
Attributes: role_id, permission_id.
Permission Roles This is a pivot table that ties

each permission to its corresponding role.
Attributes: ID, key.

This table holds all user permissions.
Attributes: ID, name, display_name.

This table holds all user roles.

Attributes: ID, term, definition,
domain_id, normalized, stem.

Terms This table holds all terms, their corresponding
domain ID, their Arabic/English
definition, stemmed and normalized form.
Attributes: ID, transcript,

user_id.

This table holds a user’s

transcript history/

Attributes: ID, name, email, avatar,
remember_token, settings,

Users email_verified_at, password.

This table holds all users

and their information.

Attributes: user_id, role_id.

User Roles This is a pivot table that

ties each user to their role.

Permissions

Roles

Transcripts

5 Component Design

5.1 Class Diagram
5.1.1 Pre-Processing Class Diagram

Figure 8 showcases all classes responsible for the pre-processing phase of text
analysis.

14

DefaultFilter

Filterinterface

+accept(bword

oceur,

g%

strength, SallTerms)

Tagger

+TERW_SPEC: string
-$dict
-$language

+_construci{Slanguage)

+initialize(Buse_apc)

~conrectDefauliNounTag($tagged term)
verifyPraperhounAtSentenceStart(§idx, $tagged_term, $tagged_terms)
~determine\erbAfterodal(Sid, Stagged_term, $tagged_terms)
“normalizePluralFarms($idx, $tagged_term, $tagoed_terms)
+okenize($text)

+ag(§terms)

TermExtractor

TermsCountFilter

+SEARCH: int
IOUN: it

~§noLimitStrength

~§singleStrengthMinOccur

PermissiveFilter

-§termes’

, $oceur, $strength, $allTerms) |

+ Oceur, $n
+accepi{Sword, Soccur, Ssirength, $allTerms)

5
-$noLimitstiength

i
+Stagger
+§filter

+_constiuci{Stagger. Tagger, Siter. Filterinterface)

Oceur, $noli

+ I
+acoept(fword, Soccur, Sstrength, SallTerms)

- Zadki(Sterm, Snorm, Smultterm, Sterms)

Figure 9: Pre-Processing Class Diagram

5.1.2 Model(s) Class Diagram

Figure 9 showcases the core models associated with the system.

15

Fextract(§tags)

HttpKernel

A

Kernel

Domain

#prniddleware: array
#middlewareGroups: array
#prouteMiddleware: array
#pmiddlewsarePriority: array

-%id
-$domain
-fereated_at
-bupdated_at
#fillable

Herms(

Term

-Fid

-Bterm
-hdedinition
-fcreated_at

-bupdated_at
-fdomain
#hguarded

+domaini)

Transcript

ExceptionHandler

A

-%id
-$oreated at
-fupdated_at

Handler

#pdontReport: array
#hdontFlash: array

+analyze(fterms)
+analyzear(fterms)
+split_words($string, $max)

+report(fexception: Exception): vaid
+render{$request, fexception: Exception)

Figure 10: Model Class Diagram

5.1.3 Controller(s) Class Diagram

Figure 10 showcases the main controllers associated with the system.

16

+_constuct(): void

+_construct() void

#SredirectTo: sting

#redirectTo: string

[#redirectTo: sting

[#—construct(): void

—_construct() void

(Brequest: TermRequest, Smodel: Term)
e_bulk(Frequest: TermBulkRequest, Smodel: Term)
+show(s

§domain: Domain)
ermRequest, Stemr: Term)

_create(§domain: Dornair)
+destroy(Bterm: Term)

#prosies: anay
#headers: int

~
—

handle(§request, $next Closure, Sguard). mixed

#addittpCaokie: bool
#except amay

+authorize() bool
+ules(): amay

+ndex()
+analyze(§request: Reque
Request)

+create)
+store(Srequest: Request)
+show(s

+edit(Fid
+update(3request: Request, $id: int)
+estroy(§id: in)

User)
+ereatel)

e(Brequest: UserRequest, §model: User)
+edit(Suser: User)
+update(Srequest: UserRequest, Suser: User)

+destroy(user User)

Domain)
+update(Srequest: DamainRequest, $domain: Domain)

Dornain)

+edit)

index()

attributes(): array

+update(Srequest: ProfiRequest)

5.1.4 Service Provider Class Diagram

Figure 11 showcases all HT'TP service providers within the application.

|
I
I
I
I
I
I
I
!
!
viceProvider !
AppServiceProvider| uthServiceProvider T 0 e EventServi i #namespace: string [CurrentPasswordCheckRule |

#listen: anay +hoot() vaid
i

+message(). string

+boct(): vaid #policies: anay
+egister(): void R

+passes (Fattibute: sting, Svalue: mixed): bool

<raite>
Notifiable

P 0 void
emapApiRoutes(): void

Figure 12: Service Provider Class Diagram

5.2 Pre-Processing
5.2.1 Normalization

Normalization to remove some characters. We remove some characters that can
be detected in the Arabic language like the hamza, taa’ marboota and yaa’
layena.

5.2.2 Stemming

The second part of our Arabic approach is to stemming of a given word. We take
every word and implement the algorithm on it to return the root of the word.
We used the ISRI stemmer in the NLTK library. If the function cannot find a
root for a specific word it returns the normalized form of the word rather that
returning it without any change. The ISRI stemmer added some modifications
to the word as they added more than 60 stopwords.

5.3 Text Classification

After that we use the bag of words approach to do text classification on the input
text to extract the domain of it. This was done by using the CountVectorizer
function in the sklearn library. Simply what this function does is to build a dic-
tionary of features and transforms documents to feature vectors. Once fitted,
the vectorizer has built a dictionary of feature indices and the index value of a

18

_token
Ssettings
Screated_at

-Supdated_
#illable: anay
#$hidden: anay

Type of Variation Example Normalization
Operation
o < ez
Short vowel / shadda Delete vowel and
: . Vs, L
inclusions i shadda diacritics
. T
Explicit nunation inclu- .z vs. Delete nunation
sions 4.z diacritics
Omission of the hamza :’:ﬂ Vs Delete hamza
Misplacement of the seat | (51" Jivs. _
of the hamza e adl Delete hamza
iaz &
Variations where taa Vus'{{d = Replace taa mar-
marbuta should be used S buta with haa
egegde
Confusion between yaa Uh s, Replace alif
and alif maksura Uk maksura with yaa
Initial alif with or with- | pond vs. Replace with
out hamza/madda/wasla pus! bare alif

Figure 13: Normalization of Arabic Language

word in the vocabulary is linked to its frequency in the whole training corpus.
It supports counts of N-grams of words or consecutive characters.

This is a very good start do feature extraction on text, but it has some
limitations. Longer documents will have more occurrences of a word even they
talk about the same subject as a shorter one. So a good solution for this is
to divide the number of occurrences of each word in a document by the total
number of words in the document. In addition to that we decrease the weight
of words that occur in different or many documents in the corpus as they are
less informative than those who occurred less, this is called Term Frequency
times Inverse Document Frequency. We do that by using the Tfidf Transformer
function also from the sklearn library.

To complete the process we trained the liner kernel of the SVM, it was used
as it is the best kernel available working with text. The idea mainly is to create
a model that can predict the category of the input text and to make the task
of the glossary look-up to extract the revelant terms according to this domain
easier.

19

set || description examples

D diacritics-vowelizations | _u u u L
oo o
P3 || prefixes of length three | JL . J& (Jls My

P2 || length two prefixes J

P1 || length one prefixes oo vy o
Pigy v g

53 || length three suffixes OB Jas Jas

52 || length two suffixes Sl vl s
Looe oS o5
&l L
proelels g

51 || length one suffixes O loo & gis

Figure 14: Stemming of Arabic Language

Technology

Acme Article
r—
Sports
O

|

Entertainment

Figure 15: SVM classification of text

6 Humnan Interface Design

6.1 Overview of User Interface

Describe the functionality of the system from the user s perspective. Explain
how the user wil be able to use your system to complete al the expected features
and the feedback information that wil be displayed for the user.

20

6.2 Screen Images

6.2.1 Main Interface

Engish [United Sares |

Interpreter Interface

governments around the world taking decisive large scale action now must be Our Moment for action we
neéd to put a price tag on carbon emissions and eliminate government subsidies for all boil coal and gas
. companies we need to end

METHANI

I stand before you not as an expert but as a concerned citizen one of the 400000 people march in the streets of New York on Sunday and the billions of others around the world

who want to solve our climate crisis every week were seeing you and undeniable climate events evidence that accelerated Climate Change Is Here Right Now droughts are

intensifying our oceans are acidifying with methane plumes rising up from the Ocean Floor we are seeing extreme Weather events and West Antarctic and Greenland ice sheets

melting at unprecedented rates decades ahead of scientific projections none of this is rhetoric and none of it is his steria it is fact my friends this body perhaps more than any other

©2019 MIU

Gathering in human history now faces this difficult but he verbal task you can make history or you will be

6.2.2 Manage Terms Interface

0 interpre

@ Analyze Transcript

ADMINISTRATION

Terms

TeRm

Abandon

Aboard age

Absolute war

Abuses

Accommodation

Accompanying supplies

Accordion defense

Accused

Ache hour

actof terrorism

Figure 17:

Speak now

Figure 16: Interpreter Interface

oeFINTION

e) iy (8

Manage Terms

21

[A serm [Ada buikcerms

Search:

oomAIN

Military

Military

Miltary

Terrorism

Military

Military

Military

Terrorism

Military

Terrorism

Next

6.2.3 Add Individual Term

DASHBOARD

Add Term

Figure 18: Add Individual Term

6.2.4 Add Bulk Terms

DASHBOARD

Add Term

Figure 19: Add Bulk Terms (Upload CSV)

22

6.2.5 Manage Domains Interface

DASHBOARD search (‘U‘ Mostafa Mahran

@ Manage Domains

Figure 20: Manage Domains

6.2.6 Add Domain Interface

DASHBOARD

Add Domain

ADMINISTRATION

@ Manage Dor s
= WonsgeTerms Domain Management =3

Domain Name

Figure 21: Add Domains

6.3 Screen Objects and Actions

The main interpreter interface (Fig. 16) is afforded to users of all types. The
user is prompted to begin an interpretation session and trigger the speech-to-
text module using the ”Start Listening” button. Audio input is received and
dissected for database look-up, the equivalent terms are returned to the interface
and displayed in the small cards located below the transcript text field. As soon
as the speaker pauses, the transcript is delegated to the static text field at the
bottom of the page.

Certain users are allowed to look at an overview of terms as shown in Fig.
17, and users with the appropriate permissions can add new terms using the
interface in Fig.18, or upload a .csv file as shown in Fig. 19.

23

Accordingly, certain users can also look at the available domains that each term
would be associated with in Fig. 20, or add a new domain as shown in Fig. 21.

7 Requirements Matrix

REQUIREMENTS TRACEABILITY MATRIX
D :ﬂx?::;;i?ﬁ;::’::j Status RF;;Z‘;!::::[S Technical Specification Implemented In
The user must not interact with the system Recognize audio input and

oo1[for this phase. Completed Recognize Speech [convert it to text pre-processing
Transcribe audio input and

002 Completed Transcribe Text display it to the user pre-processing
Split sentences and process

003 Completed Parse Text them accordingly pre-processing
Specify the context of a
sentence through database

004 In Progress. Extract Context look-up and/or classification REST
Structure a sentence and
perform database look-up on

005 Completed Structure Sentence |different parts REST
Perform SVM classification to

006 In Progress. Classify Data enhance system performance
Perform multiple pre-
processing operations on
Arabic text to simplify data

007 Testing Manipulate Data input
Obtain feedback on system
performance from the user for

008 In Progress Get Feedback future enhancements
Functionality for certain users
to be able to review feedback

009 In Progress. Review Feedback provided by other users
Tokenize the sentence based
on whitespace to extract n-

010 Completed Tokenize Sentence |grams pre-processing
RESTful API for data

011 Completed REST API input/output

This functionality should not be the primary Upload audio file for data

012|method of input. Completed Upload Audio File analysis pre-processing
Input text instead of relying on

013 Completed Input Text speech-to-text pre-processing

8 References

Figure 22: Requirements Matrix

24

