
Software Design Document of Classification of

Alzheimer’s by DNA Analysis Project

Ahmed Samir, Fairuz Soufy, Omar Ehab, Sara Hassan
Lobna Shaheen, Nora El-Samanody, Omar El-Demrdash, Rawan El-Kady

Ashraf AbdelRaouf, Lamiaa Nabil, Mohamed Shahin

March 8, 2020

1 Introduction

1.1 Purpose

This software design document describes and presents a detailed description of
the Classification of Alzheimer’s (AD) by DNA Analysis project. The main
purpose of this project is to be able to classify AD patients to healthy patients
and people who carry AD. Early diagnosis of AD may help in slowing down the
progression of the disease considerably. This document clarifies the purposes
and features of the project.

1.2 Scope

The system is developed to reveal if the patient is healthy and if not, how much
is the progression of the disease in his body. Either way, this classification helps
the patient and the doctors to diagnose the disease early in which gives them a
chance to slow down the progression of his disease depending on the stage the
patient is in since early diagnosis is key in these type of situations.

1.3 Overview

This SDD document includes 8 main sections. The first section is an introduc-
tion to our system including our scope and purpose. The second section is the
system overview illustrating our system work flow. The third section includes
the architecture design of the system, activity diagram, sequence diagram and
class diagram. The fourth section illustrates the database design in details. The
fifth section illustrates our component design including the used algorithms and
techniques. The sixth section illustrates the human interface design and de-
scribes how the user will interact with our system. The seventh section is the
requirement matrix that shows which components satisfy each of the functional
requirements.

1

1.4 Definitions and Acronyms

Term Definition

SDD
Software Design Document , used as the primary medium
for communicating software design information.

Design Entity
An element of a design that is structurally and functionally
distinct from other elements.

AD Alzheimer’s Disease.

SVR Support Vector Regression.

DNA
Deoxyribonucleic acid, a self-replicating material which is present
in nearly all living organisms as the main constituent of chromosomes.
It is the carrier of genetic information..

2 System Overview

In the application, we are implementing a system that will be able to accu-
rately and swiftly diagnose AD patients and categorize them into two classes
scrupulously: healthy patients and patients with a high risk of developing the
disease or disease carrier. Moreover, if the patient turns out to have AD we
group them into three classes those being severe cases, moderate and mild. Our
approach starts with the collection of the patient’s sample. Then they are an-
alyzed and filtered in order to get the desired chromosomes and the particular
locations that is needed to be able to properly diagnose the patient concluding
our preprocessing of the sample. The sample will then be compared with a
model prebuilt already using a SVR that extract the needed features from the
datasets. so it can be able to classify the sample correctly after this process
if indeed the patients sample is positive for Alzheimer’s it’ll be compared with
another model to be able to determine the severity of the disease in this specific
sample.

2

Figure 1: System Overview

3

3 System Architecture

3.1 Architectural Design

Figure 2: Architecture Diagram

Figure 3: Context Diagram

4

3.2 Decomposition Description

3.2.1 Class Diagram

Figure 4: Class Diagram

3.2.2 User

1. Class Name: User

2. Super Classes: N/A

3. Sub Classes:Admin,Lab Technician

4. Purpose: this class is the main class holds all functionality for other classes

5. Collaborations: userType

6. Attributes:Name,Username,password,user type.

7. Operations:Login,Log Out, Uploads sample,view results,print Results.

3.2.3 UserType

1. Type: concrete.

2. List of super classes: None.

3. List of sub classes: None.

4. Purpose: To allow scalability to add new user types.

5. Collaboration: This class is aggregated by class User, UserTypeAttribute
and Report.

5

6. Attributes: id, TypeName, options[].

7. Operations: None.

3.2.4 Admin

1. Class Name: Admin

2. Super Classes: User

3. Sub Classes:N/A

4. Purpose: this class is the holds all functionalities for Admin

5. Collaborations: N/A

6. Attributes:N/A

7. Operations:CRUD Lab Technician

3.2.5 Reseracher

1. Class Name: Reseracher

2. Super Classes: User

3. Sub Classes:N/A

4. Purpose: this class is the holds all functionalities for Lab Technician

5. Collaborations: N/A

6. Attributes: specualization, SSN,gender.

7. Operations:none.

3.2.6 DNA Sample

1. Class Name: DNA Sample

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: this class is the holds all information about a DNA Sample.

5. Collaborations: patient,Report.

6. Attributes: sample id , sample date ,sample File.

7. Operations:none.

6

3.2.7 patient

1. Class Name: patient

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: this class is the holds all information about a any patient.

5. Collaborations: gender Type.

6. Attributes:id ,name, SSN, age,Gender.

7. Operations:none.

3.2.8 Report

1. Class Name: Report

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: this class is the holds all information about DNA sample report
.

5. Collaborations: DNA Sample,Stage,patient.

6. Attributes:id ,date.

7. Operations:none.

3.2.9 Preprocessing

1. Class Name: Preprocessing

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: this class is responsible for all the processing that will be done
before clustering.

5. Collaborations: DNA Sample

6. Attributes:none.

7. Operations:Searcher, Removing,ToCsv,Filter,MergToCsv,Convert

7

3.2.10 ICluster

1. Class Name: ICluster

2. Super Classes: N/A

3. Sub Classes:K-means, Mini Batch

4. Purpose: This interface initiates the cluster function.

5. Collaborations: DNA Sample

6. Attributes:id, Stage .example stage A or B.

7. Operations: none.

3.2.11 ISearch

1. Class Name: ISearch

2. Super Classes: N/A

3. Sub Classes:none

4. Purpose:To allow searching with different Criteria.

5. Collaborations:classes (Admin, Reseracher) implements this class

6. Attributes:name,id

7. Operations:Search (String userName).

3.2.12 Classify

1. Class Name: Classify

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: To allow classification with different classifiers strategies

5. Collaborations: Class SVR

6. Attributes: none.

7. Operations: Classify(Parameters []).

8

3.2.13 LoginController

1. Class Name: LoginController

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: to control the Login view.

5. Collaborations:this class aggregated by LoginView

6. Attributes: none.

7. Operations:ControlUserLogin (String username, String pass)

3.2.14 Stage

1. Class Name: Stage

2. Super Classes: N/A

3. Sub Classes:N/A

4. Purpose: This class responsible for storing the stages types

5. Collaborations: report

6. Attributes: id, stage.

7. Operations: none.

9

3.2.15 Activity Diagram

Figure 5: Activity Diagram

10

3.2.16 Admin Sequence Diagram

Figure 6: Retrain Model Diagram

Figure 6 displays the sequence of the process of how the system admin can
retrain the model in order to further improve the accuracy of the existing model
the process start with the admin logging in then the admin will upload the new
data that will be appended to the existing dataset so the system will check first
if the file is in the same format before appending it then it’ll retrain the model
and compare its accuracy with the existing one if the accuracy is indeed higher

11

a model will be created to replace the current one if not the new model and
dataset will be discarded.

3.2.17 Researcher Sequence Diagram

Figure 7: Check DNA Sample Diagram

In figure 7 the processes of how a researcher can check if a patient has AD or
not by uploading into the system after logging in the researcher will upload the
sample the system will then use the existing model to get a result that is after
the system checks the file to make sure its compatible.

12

3.3 Design Rationale

Concerning the architecture of the system the model view controller architecture
was chosen due to its many advantages over other architectures like Development
of the application becomes fast and simple ,simplifies for multiple developers to
collaborate and work together on the same project since the system is divided
into separate parts, furthermore it makes it easier to Update the application
since only the component or the part that requires updating is accessed.

Regarding the algorithm used in order to classify the patients support vector
regression (SVR) was used [1]. This algorithm works by parsing through the
given dataset and mapping data to a high-dimensional feature space so that
data points can be categorized, even when the data are not otherwise linearly
separable. This algorithm was chosen after trying out numerous algorithms
that may fit the needs of our project however SVR turned out to be the best
one overall regarding its complexity and its accuracy furthermore there were a
handful of other algorithms that were experimented with and those are Decision
Tree, Random Forest , Grid search (Linear , RBF), Random Search (Linear ,
RBF) , Näıve Bayes , Logistic Regression , Deep Learning , Generalized Linear
Model, Fast Large Margin , and Gradient Boosted Trees.

Decision tree builds classification or regression models in the form of a tree
structure. It breaks down a data set into smaller and smaller subsets while at
the same time an associated decision tree is incrementally developed. The final
result is a tree with decision nodes and leaf nodes. A decision node has two or
more branches. Leaf node represents a classification or decision.

Random forest is similar to the Decision tree model since the random forest
is comprised of a number of Decision trees instead of just one When training,
each tree in a random forest learns from a random sample of the data points.
With each tree training slightly different on different observation therefore pro-
ducing a well-balanced prediction derived from the average of the all the trees
that were trained however the abundance of trained trees may produce noise.

Grid Search and Random Search are algorithms that are given models and
data and they each parse through the parameters that can be passed to the
models in order to produce the best possible results that can be produced given
that particular model however each algorithm parse through the data in a dif-
ferent way. Grid searching works by trying all the different combinations of
parameters by iterating through them thus producing great results however can
be computationally expensive while random search works by trying out sets of
random combinations of parameters in order to find the best possible model
while optimizing the parameters by evaluating the model at random configura-
tion points. Random search can produce better results because of its random
method of trying out random parameters and can have a lower complexity when
compared to Grid Search.

13

Näıve Bayes
Logistic regression does not try to predict the value of a numeric variable

given a set of inputs. Instead, the output is a probability that the given input
point belongs to a certain class. It is primarily used in binary classification.

Deep learning works by training an AI that if given a set of inputs can pre-
dict the output the AI consists of 3 types of layers (input, hidden, output) with
each layer having a number of neurons inside it the connections between neurons
represents the weight of each input and based on this weight the neuron decides
what to do with the given output through an activation function inside each
neuron.

Generalized Linear Models are an extension of traditional linear models.
This algorithm fits generalized linear models to the data by maximizing the log-
likelihood. The elastic net penalty can be used for parameter regularization.
The model fitting computation is parallel, extremely fast, and scales extremely
well for models with a limited number of predictors with non-zero coefficients.

Fast Large Margin (FLM) is similar to normal linear SVM algorithms in the
sense that it tries to map the data and inputs onto a linear plane in order to
properly classify the inputs however FLM is designed to work on huge datasets
with millions of records.

Gradient Boosted Trees is a tree-based learning model that trains many
models in a gradual, additive and sequential manner. Predictions of the final
ensemble model is therefore the weighted sum of the predictions made by the
previous tree models that were previously built therefore producing a model
based on the best fitted trees trained during the run time.

However due to the nature of the dataset the models built with the previously
mentioned classifiers ended up overfitting and produced unrealistic accuracy in
almost all attempts with results ranging from 98-100 % therefore the SVR model
was chosen since it had the most realistic accuracy of almost 92% and it was
also one of the most computationally efficient algorithms that were tested.

14

4 Data Design

4.1 Data Description

Figure 8: Database Diagram

4.2 Data Dictionary

4.2.1 Security

Security is a very important factor for the project so no one has the access to
the patient’s data unless he has a profile and his profile is allowed to access the
data. The password of every system user is hashed by using sha324 function.

4.2.2 Reliability

The system is reliable enough to handle all failure events. The time needed to
diagnose a patient on the system has an average speed to check since the data
is large.

4.2.3 Portability

The system is written by Python so it is an executable file that can be deployed
on Windows operating system and Mac OS.

4.2.4 Efficiency

The system is very efficient with the way it handles both system memory and
storage. Since the dataset is very large and many operations are done on each
file in the dataset the system handles each file and moves the desired portion of
the file into a new smaller sized file therefore the dataset’s size is reduced signif-
icantly, moreover after processing the files we delete them in order to eliminate
any wastage of the system resources

15

4.2.5 Maintainability

The code is very simple so it has the availability to be maintained later.

5 Component Design

In this phase we prepare the DNA sample for the classifier, first we check if
the format of the file is csv or not, then we filter the data by locating only the
desired locations based on the chromosome numbers and locations furthermore
we select only the SNP names that starts with “rs”, drops any rows with null
values, drops any other columns that are not important and finally we check if
the data is all numeric or not if not. We calculate a score by comparing the ref
column with Allele1- forward and Allele2-forward. If both of them are equal to
ref column, we represent it by 0 if only one of them matches with the ref column
their score will be represented by 1 and if both of them don’t match, the ref
column their score will be represented by 2.

5.0.1 SVR

In details, SVR works by using a hyper-plane and two boundary lines also known
as thresholds. In order to properly build an accurate model that fits the data
properly, the hyper-plane is the line that separates the different classes in the
data while the boundaries are the error threshold that is allowed the goal is to
create a model that has a hyper-plane and boundaries that definitively covers
most of our data points. Furthermore, the boundary lines should by equidistant
from the hyper-plane meaning that the model should not favor a class more
than the other in other words if represented by linear equation that lines for
the boundaries and the hyper-plane should be wx+b=0 for the hyper-plane and
Wx+b=+e , Wx+b=-e for the boundary lines so that the e is the same for both
lines creating the margin that’ll become the model that fits the data.

16

Figure 9: SVR

Where the red lines represent the boundaries and the red line represent the
hyper-plane.

6 Human Interface Design

6.1 Overview of User Interface

Our system is a desktop application. It’s user interface is very applicable and
usable. You can login whether you are an admin or a researcher. The login
screen directs you to different screens depends on the user type. System admins
have some functions such as uploading data and testing the model. While
researchers are responsible for dealing with patients. Illustration for the whole
system is shown in Section 6.2.

6.2 Screen Images

First we have the home Screen with two buttons login and register. If login
button is pressed, it will direct the user to the login screen in Figure 6. The
first field to enter username and second is for the password. If you logged in as
an admin you will access the screens in Fig.9 and if you logged in as a researcher
you will access screens in Fig.10. Both the admin and the researcher can upload
a DNA sample to be tested and both can view the patients history. The admin

17

can also upload a new dataset that can be appended to the existing one in
order to retrain the model and get a higher accuracy than before. If the register
button is pressed the user will be directed to the register screen shown in Fig.7.
Then, they will have to enter their first name, last name, unique username,
password and at last choose a user type either admin or researcher and after
the registration will be directed to the login screen shown in Fig.8.

Figure 10: Home Screen

18

Figure 11: Register Screen

19

Figure 12: Login Screen

20

Figure 13: Admin Screen

21

Figure 14: Researcher Screen

7 Requirements Matrix

Name Requirement Id Type Description Module Status

Upload DNA 3.3 Required Lab technicians will be able to upload the sample DNA.
Lab technicians
/Researcher

Completed

View Result 3.4 Required Outputs the result of the analysis to the user.
Lab technicians
/Researcher

Completed

Check medical history 3.6 Required By using the patients SSN it will retrieve the medical history of the patient.
Lab technicians
/Researcher

Pending

Filter 3.8 Required Filters all the unnecessary data that may alter the process Preprocessing Completed
MergeCsv 3.9 Required Merges all the .csv files in a given directory into one Preprocessing Completed
Conversion 3.10 Required Converts data into numerals in order to be handled by an algorithm Preprocessing Completed

Cluster 3.11 Required
Clusters a given dataset by using kmeans and minibatch kmeans to
cluster the diseased samples into 3

Lab technicians
/Researcher

Completed

Searcher 3.12 Required Extracts the four desired chromosomes out of the WGS N/A Completed
Remover 3.13 Required Cuts the unnecessary parts from the WGS chromosomes N/A Completed

ToCsv 3.14 Required
Converts WGS files into .csv and splits the sequence into
threes each in a cell

Preprocessing Completed

CrossRefrence 3.15 New Crosss refrences the snps in the datasets and outputs a new dataset with common snps Preprocessing Completed
GetScore 3.16 New Gets the score of the patient in each of the SNPs Preprocessing Completed
Transpose 3.17 New Reshapes the dataset into the required shape Preprocessing Completed
SVRClassifier 3.18 New Classifies the given dataset using support vector regression Classification Completed

22

8 References

References

[1] Mariette Awad and Rahul Khanna. Support vector regression. In Efficient
Learning Machines, pages 67–80. Springer, 2015.

23

