Classification of Alzheimer's by DNA Analysis

By: Ahmed Samir, Fairuz Soufy, Omar Ehab and Sara Elbedeawi. Supervised by: Dr. Ashraf Abdelraouf and Eng. Lobna Shaheen. In collaboration with Faculty of Pharmacy: Prof. Lamiaa Nabil, Dr. Omar El-Demrdash and Dr. Rawan ElKady

Agenda

- Introduction.
- Problem definition.
- Block diagram.
- Use-case.
- Sample of functional requirements.
- Non-functional requirements.
- Class diagram.
- Results.
- Demo.

Introduction

What is Alzheimer's disease?

Alzheimer's is a progressive brain *disorder* that slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. Early diagnosis of Alzheimer's may help in slowing down the progression of the disease.[1]

Alzheimer's can be detected by analyzing the DNA.

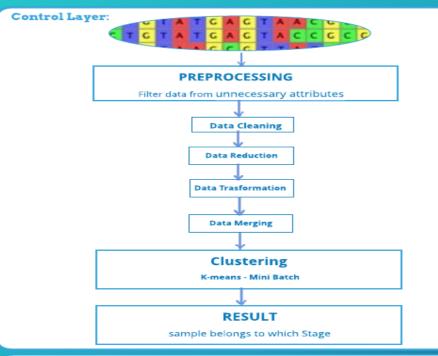
Introduction

Term	Description						
DNA	DNA is a very long chain made up of something called nucleotides. ACGTCCAGGTAGCT						
Nucleotides	There are 4 different nucleotides A - adenine T - thymine C - cytosine G -guanine.						
Gene	Is a sequence of nucleotides ,every three letters makes a codon/amino acid. AAGGAG K—E						
SNP analysis	only looks at specific locations in DNA where relevant information can be gathered						
Mutation	A Mutation occurs when a one or nucleotide is changed in the DNA						
Silent mutation	DNA level TTC TTT protein level Lys <mark>Lys</mark>						

Fact About Alzheimer's

Scientists have identified four genes in which mutations cause Alzheimer's disease, these genes are found in specific locations inside the DNA sequences[2].

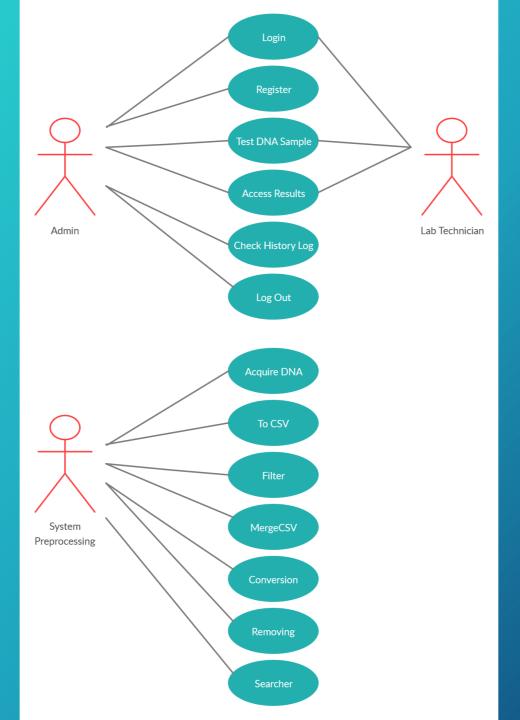
Gene	Chromosome	Start Location	End Location			
PSEN-2	1	227,047,885	227,093,804			
PSEN-1	14	73,593,143	73,700,399			
APOE	19	45,399,039	45,422,650			
APP	21	27,242,861	27,553,446			


Problem Definition

The existing classifications of AD is either the patient is healthy, or the patient is in severe case of Alzheimer.

- We are clustering the diseased patients into three clusters mild, moderate and severe.
- Healthy patients will be classified into two stages.
 - Stage A: Healthy patients that are not going to suffer from Alzheimer's.
 - Stage B:Patients that have high risk to suffer from Alzheimer's.

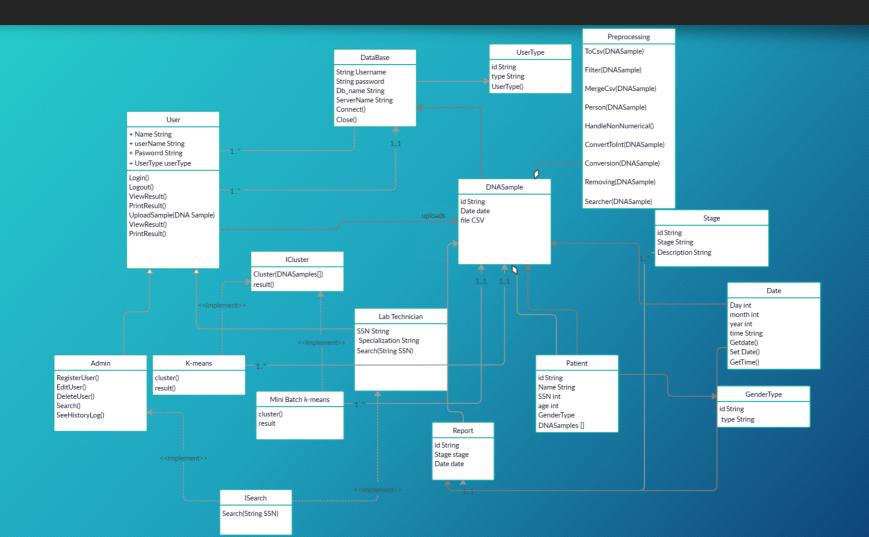
Block Diagram



Data Access Layer:

Permissions	Admin	Lab technician
Login	_	✓
Add Users	✓	
Test Sample		✓
Access Results	√	✓
See History Log	✓	
Print Results	√	√

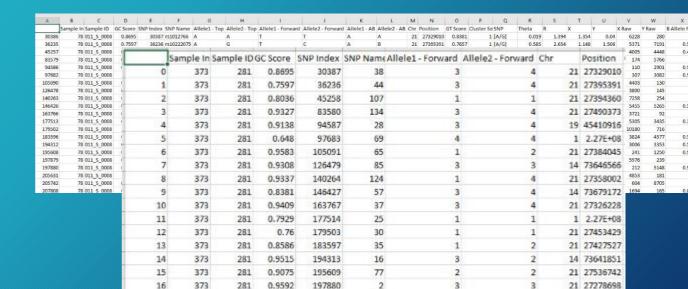
Use-case diagram


Functional Requirments

- The Admin should be able to register, edit and delete users.
- Users should be able to login by entering their credentials.
- Users should be able to upload a DNA sample.
- Users should be able to view result as in which stage is this patient.
- Users should be able to print result.
- Users should be able to check medical history of specific patient.

Non-functional Requirements

Class Diagram



21 27269954 14 73597153

Preprocessing

The files go through these steps:

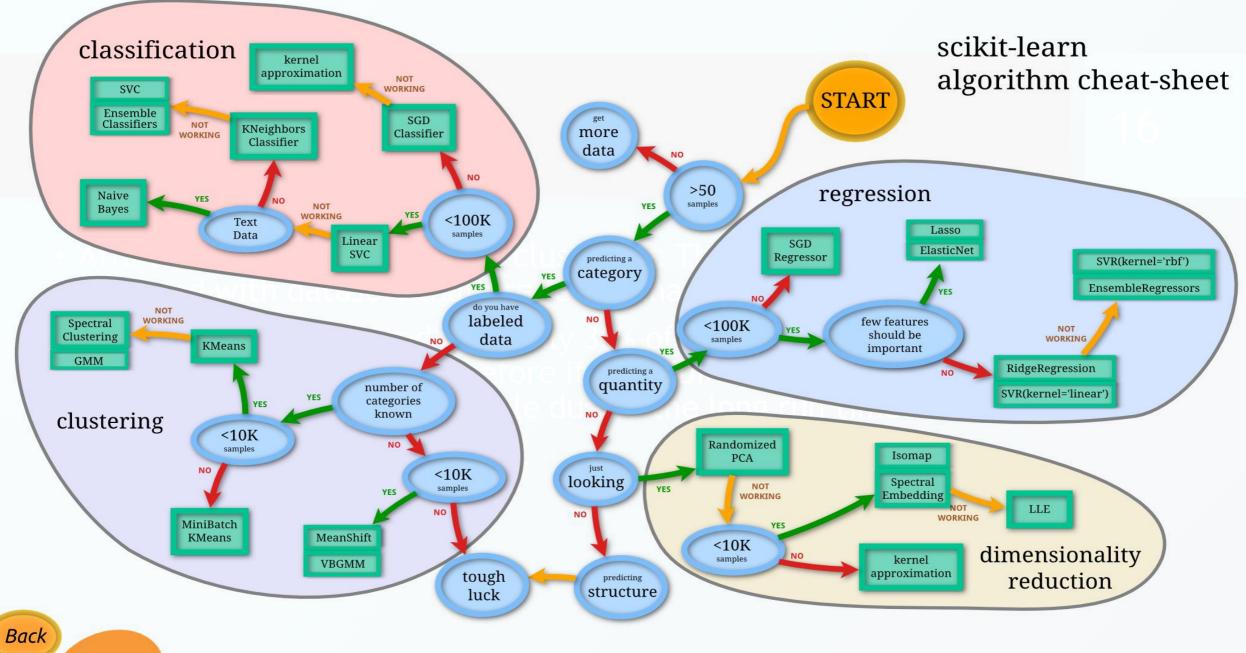
- We remove any irrelevant chromosomes since we're primarily working with 1,14,19 & 21.
- We remove the excess of SNPS that are out of our range.
- We later drop irrelevant columns in order to not have the interfere with our process
- We filter one last time for SNP name that begin with "rs" since those are the ones more likely to vary between individuals.
- Then we change every string into an int.

0.9544

197881

17

Results

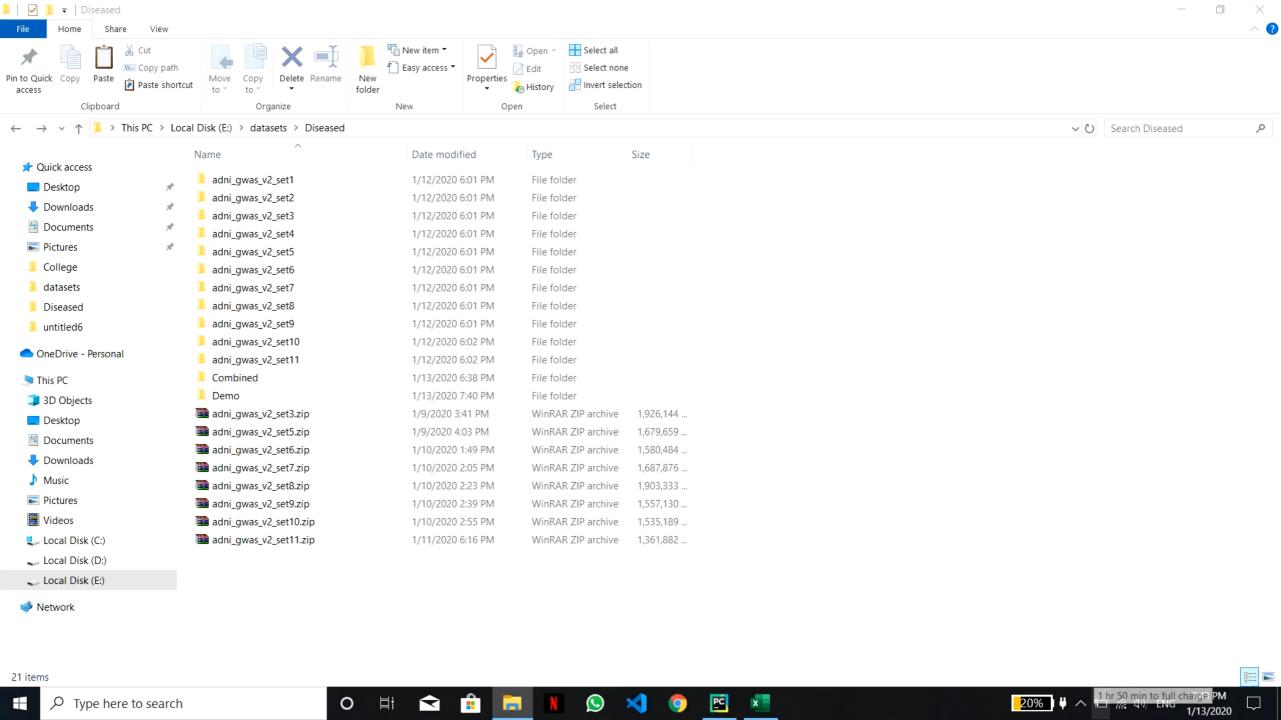

We clustered the diseased dataset into 3 clusters here is the results

k-mean

```
k-mean
Total data = 106131 record
Cluster 1
26 %
Cluster 2
35 %
Cluster 3
39 %
```

Mini batch

```
Minibatch K-means
Total data = 106131 record
Cluster 1
38 %
Cluster 2
35 %
Cluster 3
28 %
```

Previous work / Present work

Whole Genome Sequence	SNP (Single nucleotide polymorphisms)								
CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGCCGGGGGGGG	Sample Index Sample ID	GC Score	SNP Index SNP Name Allele1 -	Top Allele2 - To	Allele1 - Forward	Allele2 - Forward	Allele1 - A	B Allele2 - AB Chr	Position 6
CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTCTGCTTGCCTCGAAGCA	373 002_S_0295	0.8695	30387 rs1012766 A	G	Т	c	А	В	21 27329010
	373 002_S_0295	0.7597	36236 rs10222075 A	G	T	C	Α	В	21 27395391
ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAGACATGCGTGGTAGTCA	373 002_S_0295	0.8036	45258 rs10482982 A	A	A	A	A	A	21 27394360
TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATTCCCAAAGGTCGCAAGA	373 002_S_0295	0.9327	83580 rs11088023 A	G	T	С	А	В	21 27490373
CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGGGAACCGGCTCCCAAAT	373 002_S_0295	0.9138	94587 rs1129156 A	G	T	С	A	В	19 45410916
CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGGCGGTTAGGTTAAATGACTCTTCTATCTTATGGTG	373 002_S_0295	0.648	97683 rs11585386 G	G	C	С	В	В	1 2.27E+08
ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTAGATCAAAGGATCCCCG	373 002_S_0295	0.9583	105091 rs11701686 A	G	A	G	A	В	21 27384045
	373 002_S_0295	0.9308	126479 rs12147044 A	A	T	T	A	A	14 73646566
AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTACCTGCCCTCCCCTCACC	373 002_S_0295	0.9337	140264 rs12481871 A	C	A	C	A	В	21 27358002
GGTTAAGGCGTGTGATCGACGATGCAGGTATACATCGGCTCGGACCTACAGTGGTCGATCGA	373 002_S_0295	0.8381	146427 rs12589973 A	G G	1	C	A	В	14 73679172
TOGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGACCTACCT	373 002 S 0295 373 002 S 0295	0.9409	163767 rs13047365 A 177514 rs1341715 A	0	1		A .	B	21 27326228 1 2.27E+08
AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAATATATCTGCACCGCTT	373 002 S 0295	0.7525		^	Λ.	Λ.	٨	^	21 27453429
	373 002_5_0295	0.8586	183597 rs1382005 A	G	Δ	G	Δ	R	21 27427527
CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCCCAGCTACGCTCAGGAC	373 002 S_0295	0.9515	194313 rs1468507 A	c	T	G	A	В	14 73641851
GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGAATATTGTGCTAATGCA	373 002 S 0295	0.9075	195609 rs1477717 G	G	G	G	В	В	21 27536742
TCTCGTCCGTAACGATCTGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTCCACAATGAGAAAGTCC	373 002 S 0295	0.9592	197880 rs1497273 A	A	Т	Т	A	A	21 27278698
TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCTAAGAATCACGGGAATC	373 002 S 0295	0.9544	197881 rs1497290 A	G	A	G	A	В	21 27269954
	373 002_S_0295	0.429	205632 rs15566 A	A	A	A	А	A	14 73597153
ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCGTGGGCACCGCAGATCA	373 002 S_0295	0.7449	205743 rs1557365 A	G	T	С	Α	В	21 27552366
AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCATCAAACTTCAATAAAT	373 002_S_0295	0.9105	207809 rs1571662 A	C	A	С	A	В	21 27424948
CCAAAGOGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTACAACCCTTCCCCCTTG	373 002_S_0295	0.9344	207810 rs1571665 A	G	A	G	А	В	21 27551612

Demo

18

Any Questions?

Thank You ©