

IFish Farm: Monitoring and analysis of fish anomaly behavior in ubiquitous environment

ALI AHMED ALI- HUSSAM EL-DIN MOHAMED- OMAR ANAS- YOUSSEF MOHAMED

Supervisor: Dr. Ayman Ezzat, Dr. Ayman Nabil

Teacher Assistant: Eng. Noha Elmasry

Date: 08/10/2019

بالتعاون مع مركز بحوث الأسماك - جامعة قناة السويس

Introduction 1/2

- ☐ Fish farming is very tedious and is of high labor cost. [1]
- Different tasks in fish farms:
 - Disease control.
 - Water quality monitoring. (Ammonia)
 - Fish feeding.
 - Anomalies insides pond (Size, speed, color..etc)
- □ We visited Fish Research Center "مركز بحوث at Suez Canal university in Ismailia governorate.

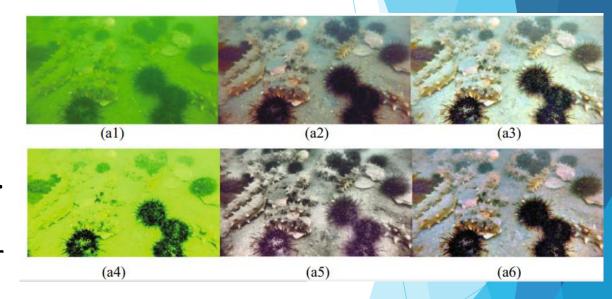
Semi-intensive culture system	Common carp (Poland)	Indian carp (India)	Tilapia (C. Africa)	Monosex tilapia (Jamaica)
Juveniles for stocking	2.0	44.2	8.0	27.3
Fertilizers	4.7	5.5	1.0	1.3
Supplementary feeds	43.8	0.3	17.7	55.9
Labour	30.0	32.9	67.1	9.1
Maintenance/repairs	8.2	0.3	1.2	1.5
Others	11.3	16.8	5.0	4.9
Total	100.0	100.0	100.0	100.0

Management cost of fish farms

Our team at the fish farm

Introduction 2/2

- Fish health is connected to the percentage of ammonia inside the pond.
- Frequent follow up of fish sizes in the same pond by the farmer.
- Change fish movement indicates:
 - Lack of oxygen.
 - Change of water temperature.
 - Unidentified causes.


- Fish death due to ammonia

- Different Fish Sizes.

Related Work (1/3): Enhancing images of unclear water.

- ☐ Enhancing images to remove water turbidity.
- Images is poor due to low contrast, color degradation and non-uniform illumination
- Proposed an enhancement method "IMSRCP".
- ☐ IMSRCP gives faster results compared to other 4 algorithms (ACE, MSRCR, MSRCP, IGD).
- Processing speed needs to be improved in the future.

(a1) original image. (a2-a6) are the images enhanced by the ACE, MSRCR, MSRCP, IGD, and IMSRCP, respectively

Tang, C., von Lukas, U. F., Vahl, M., Wang, S., Wang, Y., & Tan, M. (2019). Efficient underwater image and video enhancement based on Retinex. Signal, Image and Video Processing.

Related Work (2/3): Detecting abnormal fish trajectories.

- ☐ Video based detection of abnormal trajectory.
- Outlier detection on each cluster was applied.
- ☐ Gaps between trajectories cause difficulty in tracking fish which is needed in the feature extraction phase.
- ☐ The proposed method showed 13% false positive rate while other method in related studies achieved 91% false positive rate[2]
- As a future work ,hierarchical classification methods can be used.

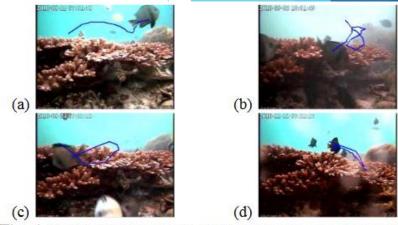
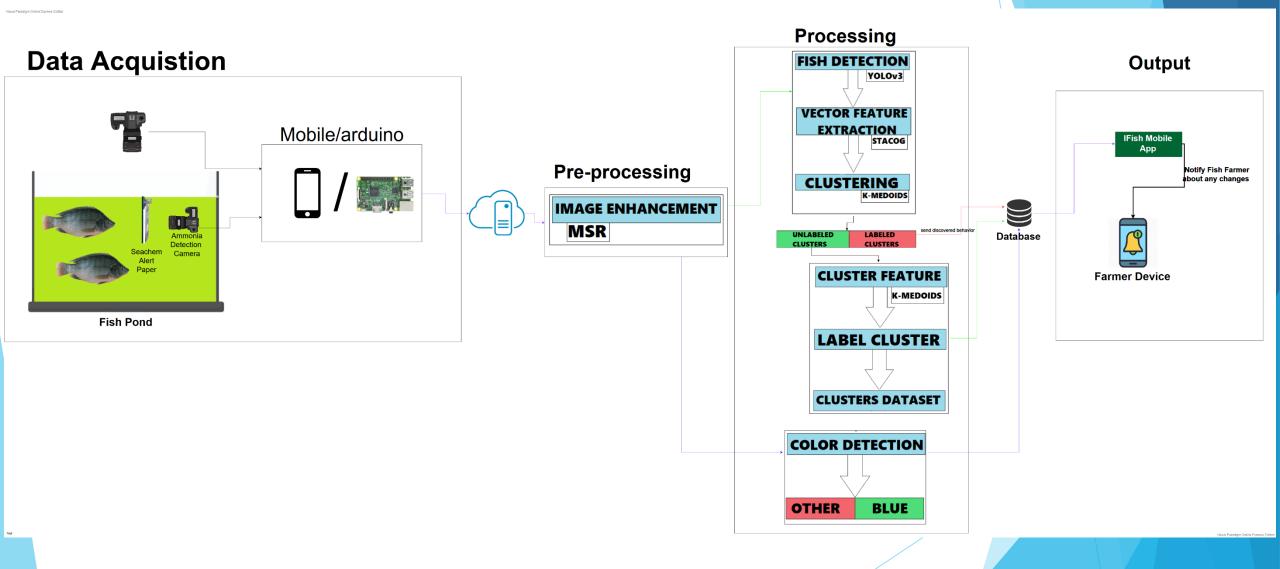


Fig. 4. (a-b) Examples of normal fish trajectories, (c-d) Examples of abnormal (rare) fish trajectories.

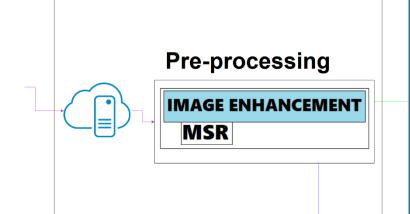
[1]Beyan, C., & Fisher, R. B. (2013). Detecting abnormal fish trajectories using clustered and labeled data. 2013 IEEE International Conference on Image Processing.

[2] Automatic Fish Classification for Underwater Species Behavior Understanding, First ACM ARTEMIS, 45-50, 2010.

Related Work (3/3): Real-time abnormal event detection.

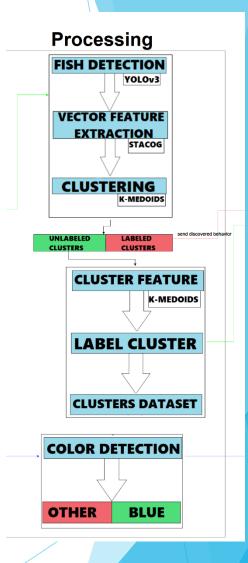

- ☐ The aim is to develop an unsupervised method to detect anomal events in crowded scenes.
- ☐ They used:
 - 1. Spatio-temporal descriptor (STACOG)
 - 2. K-medoids clustering algorithm
- ☐ the proposed method processing time is faster than the best competing method by 26%.
- ☐ The future work is to investigate how to detect and localize the anomalous regions of a scene.

Problem Statement


 Reducing the time and costs needed to maintain a fish farm by offering real-time feedback on water quality, while predicting various causes of fish behavior in the pond at a decent accuracy.

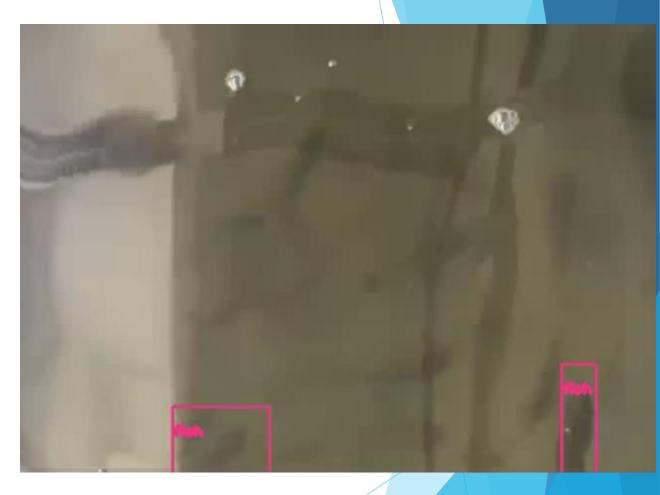
System Overview

Preprocessing


- ☐ Image/Video Preparation:
 - Proposed technique:
 - ✓ Multi-Scale Retinex algorithm is applied to enhance colors in the images.
 - ✓ STACOG descriptors for feature extraction.(Acceleration, velocity, etc..)

Processing:

- Object Detection , speed and count calculation:
 - Proposed Technique:
 - ✓ YOLOv3
 - ✓ Optical Flow
- Clustering:
 - Proposed Technique:
 - ✓ K-Medoids


Expected Results

- Enhanced color detection accuracy to reduce fish poisoning because of toxic ammonia.
- Predicting the causes of fish movement in the pond at a decent accuracy.
- ☐ Fish transition between ponds becomes more easier due to early detection of size change.

Demo 1/2

-Our Setup for experiments

-Our model used in fish farm.

Demo 2/2

Any Questions?

THANK YOU

