
Software Design Document

Hazem Alaa, Khaled Waleed, Moataz Samir, Mohamed Tarek
Eng. Hager Sobeah, Dr. Mustafa Abdul Salam

March 8, 2020

1 Introduction

1.1 Purpose

The purpose of this documentation is to present and describe the architecture
and system design of our system palm care. Palm care system is a mobile
application for detecting palm trees common diseases. This documentation also
highlights the system components and how they interacts with each other and
defines the functional requirements and their impact on the system architecture
and design.

1.2 Scope

A mobile application to help palm tree owners especially palm farm owners
to detect palm common diseases such as leaf spots and blight spots by using
normal mobile cameras and can detect a lethal pest called Red Palm Weevil by
acquiring thermal images of palm trees using thermal USB camera which can be
connected to smartphones and also by using hyperspectral cameras for showing
palm chlorophyll indices, then combine the results of thermal and hyperspec-
tral imaging to provide reliable results in case of detection of RPW. Moreover
providing treatments to the mentioned diseases according to palm health state.
This application will ve huge amount of time and money spent on experts and
traditional methods and will provide more efficient and accurate results.

1.3 Overview

This documentation includes 8 main sections. The first section is an introduc-
tion to our system including our scope and purpose. The second section is the
system overview illustrating our application system workflow. The third sec-
tion includes the architecture design of the system, activity diagram, sequence
diagram, state diagram and class diagram. The fourth section illustrates the
database design and data flow in details . The fifth section illustrates our
component design including the used algorithms, machine learning and image
processing techniques. The sixth section illustrates the application design and

1



describes how the user will interact with our system. The seventh section is the
requirement matrix that shows which components satisfy each of the functional
requirements. The rest of the sections are appendices and references.

1.4 Definitions and Acronyms

Term Definition
RPW Red Palm Weevil.
SVM Support vector machine.
CNN Convolutional neural network
MVC Model-View- Controller.

2 System Overview

In palm care application the user will be able to capture palm tree leaves using
his mobile camera and the application will detect if the palm tree is infected
with leaf spots and blight spots diseases. The user can also use the application
to capture thermal and hyperspectral images with using external thermal and
hyperspectral USB cameras connected to his mobile to detect RPW lethal pest.
The user can also upload images instead of capturing them. The application will
recommend the user to use thermal and hyperspectral images to increase the
accuracy of the results concerning RPW detection. The application enhance
the acquired images by using image processing techniques such as histogram
normalization and image masking then apply feature extraction techniques to
be classified by CNN and SVM algorithms to tell whether the palm is infected
or healthy and provide the suitable treatment according to the palm state.

2



Figure 1: System Overview

3 System Architecture

3.1 Architectural Design

our system is based on the famous design patter (MVC) Model View Controller
we used because of it’s critical benifits it’s offer such as flexibility as the code
is separated between three files that make any change won’t affect the whole
system but one part Model: the model sole purpose is to grab the data from
the firebase and pass it to the controller Controller: the controller is the binder
if the design patter as all the logic code is happening and it gets the data to
the view View: the sole purpose of the view it to display the data after t was
proccesed by the controller

3



Figure 2: system Architecture Diagram

3.2 Decomposition Description

Our System use the famous design pattern (MVC) in where is the model where
all the data flow happens and the view part where the user interface and lastly
the controller which combine all o f the together

• View

– Login View : where the user will allow to enter his/her username and
password to use the application

– Sign Up View : where the user will be able to register for the appli-
cation

– Reset Password View : where the user will be able to rest the pass-
word

– Choose category where the user choose what part of the tree will he
upload or capture

– Upload image View : where the user will be able to capture image
using the camera or thermal camera or upload a certain image for
classification

– show palms view : where the user where able to see his own palms
listed

– results view : where the user where be able to see the classification
result and the suggested treatment if the palm where ill

• Controller :

– User Module:

4



∗ User Controller : controller has functions such as
index() :that is responsible to get all users
show(userid):show the user data in details
update(userid ,[]User ):is used to update users data
create():to route to the Sign Up page
delete(): a function where we can delete the user
isverified():check if the user is verified return true or false.
login(email,password):check if the user credentials match what
in the database
logout():end the session of the user

∗ UserType Controller : controller has function such as index()
:that is responsible to get all usertypes
show(userid):show the usertype data in details
update(usertypeid ,[]UserType ):is used to update users data
delete(usertypeid): a function where we can delete the usertype
insert(object[]): a function where tha admin can insert a new
usertype

– Palm Module:

∗ Palm Controller :
index() :that is responsible to get all palms
show(palmid):show the palm data in details
update(palmid ,[]palm ):is used to update palm data
delete(palmid): a function where we can delete any palm
insert(object[]): a function where tha user can register a new
palm

∗ infectionlevel Controller : index() :that is responsible to get all
infection level
show(infectionlevelid):show the infection level of the palm
update(infectionlevelid ,[]infectionlevel ):is used to update infec-
tion level of the palm
delete(infectionlevelid): a function where we can delete any in-
fection level
getdisease(Disease disease): a function to get the disease and set
it’s own infection level
getimage(Image image):get image of a certain disease with a cer-
tain infection level
create():a route for the page for creating an infection level

∗ Disease Controller :
index() :that is responsible to get all diseases
show(diseaseid):show the diseases of the palm
update(diseaseid ,[]disease ):is used to update diseases of the
palm

5



delete(diseaseid): a function where we can delete any disease
create():a route for the page for creating a disease
insert(object[]): a function where the user can add a disease
getimages(Image []image):get all images of a certain disease
getAllInfectionLevels(InfectionLevel InfectionLevel):InfectionLevel[]:
a method to get all infection levels
+getInfectedPalms(palm[] Palm):Palm[]:get all infected palms

– Permission Module:

∗ Permission Controller :
index() :that is responsible to get all permissions
show(permissionid):show the permissions of the user
update(permissionid ,[]Permission ):is used to update Permission
of the user
delete(permissionid): a function where we can delete any per-
mission
create():a route for the page for creating a permission
insert(object[]): a function where the user can add a permission
to a user
getusertype(usertypeid): a function to get a user type

– Classification module:

∗ Classification controller
CNN():to invoke the CNN Model
SVM():to invoke the SVM model

• Model :

– Pre-trained Models:

∗ CNN: we use the our pre-trained CNN Model to detect normal
images

∗ SVM: we use the SVM model to classify thermal images

– Admin:
addUser(email , password , userTypeId , name): admin can add user
editUser(userId , userTypeId): void:admin can edit user data
deleteUser(userId): void:admin can delete a user
viewUserProfile(userId): void: admin can view a certain user profile
viewAllUsers(): user[]:admin can view all the users on the applica-
tion
addUserType(name , parentId): void:admin can add a new usertype
editUserType(userTypeId , name): void:admin can edit a certain
usertype
deleteUserType(UserTypeId): void: admin can delete a usertype
viewAllUserTypes(): userTypes[]:admin can view all types of users

6



on the system
viewDisease(DiseaseId):Disease: admin can view a cetain disease in
details
viewAllDiseases():Diseases[]: admin can view all diseases at once
addPalmType(name):void: admin can add anew palm type to the
system
editPalmType(palmTypeId , name):void: admin can edit a palm type
viewAllPalmTypes():PalmTypes[]: admin can display all type of palms
at once
viewUserTypePermissions(): Permissions[]: view all user type per-
mission
getUserTypeName(): string:get user type name

– Palm owner:
addNewPalm(palmTypeId , imageTypeid , File image , objectTypeId):void:
the palm owner/owner of the field can add a new palm with an im-
age
updatePalmInfo(palmId ,palmTypeId , imageTypeid , File image ,
objectTypeId):void: the palm owner can update his palms informa-
tion
deletePalm(palmId):void:a palm owner can delete any palm he own
addPalmImages(File Images[]):void:he can add a new imges for palm
deletePalmImages(File Images[]):void: a palm owner can delete palm
images
viewstatistics(): void: view statistics or results

– Expert :
correctResult(Palm PalmId, infectionLevelId): void: an expert can
correct a result that was wrong by the model

– Palm
getPalmType(PalmType palmType): string:get a certain palm type
add():void: add a palm
getImages(Image obj): Image[]: get images

– image:
getImageType(imageType type , typeId): string:get image type to
get to classification getDiseases[]:Disease[]:get the diseases in the im-
age getPalm(Palm object): Palm:get the palm that is in the image
getInfectionLevels(InfectionLevel infection): InfectionLevel[]:get in-
fection levels in the image

– Infectionlevel
getDisease(InfectionLevelId):Disease:get the disease in an certain in-
fection level
getImages(): Images[]:get images of an infection level diseases

7



– Permissions:
getUserTypes(UserType object):UserType[]:get all usertypes

– Disease
getAllInfectionLevels(InfectionLevel InfectionLevel):InfectionLevel[]:get
all infected levels in disease
getInfectedPalms(InfectionLevel InfectionLevel):Palm[]:get all infected
palms getImages(Image Image):Image[]:get images of the disease

3.2.1 class diagram

Figure 3: class diagram

8



Class Name User
Super Class None
Subclass PalmOwner,expert,admin
Purpose a class model to get all data of the user
Collaboration aggregate with Palm,IviewAllPalms and usertype

Attributes

id: int, name: String, email: String, password: String
email verified at: String, userTypeId: int,ismale: boolean
created at: String, updated at: String,isdeleted: boolean
Palms[]: Palm,UserType: UserType,strategy: IVeiwAllPalms

Operation

login(email,password): void, isverified(email,verifiedat) : boolean
logout(): void
signUp(name,email,password,userTypeId,ismale):
void,updateUserInfo(userId , name , email,password , ismale):void
ViewResults(PalmId):void,viewPalm(PalmId): Palm
setStrategy(IVeiwAllPalms): void,getStrategy(): IVeiwAllPalms

Constraints user is one of the core classess of the application

Class Name SingleTone
Super Class None
Subclass None
Purpose design pattern for database instance
Collaboration None
Attributes Instence:SingleTone
Operation getInstance(): SingleTone
Constraints None

Class Name UserType
Super Class None
Subclass None
Purpose represent different types of users
Collaboration association with Permissions , aggregate user and usertype controller

Attributes
id: int name: string
parentId: intpermissions[]:Permissions

Operation getPermissions(Permission object):Permissions[]
Constraints can’t work without user class

9



Class Name PalmOwner
Super Class user
Subclass None
Purpose a class represent Palmowner
Collaboration extends from user.
Attributes None

Operation

addNewPalm(palmTypeId , imageTypeid , File image , objectTypeId):void
updatePalmInfo(palmId ,palmTypeId , imageTypeid , File image , objectTypeId):void
deletePalm(palmId):void
addPalmImages(File Images[]):void
viewstatistics()void deletePalmImages(File Images[]):void

Constraints user can’t work without a user

Class Name Admin
Super Class user
Subclass None
Purpose a class represent Admin user type
Collaboration extends from user class
Attributes None

Operation

addUser(email , password , userTypeId , name): void,editUser(userId , userTypeId): void
deleteUser(userId): void,viewUserProfile(userId): void
viewAllUsers(): user[],addUserType(name , parentId): void,
editUserType(userTypeId , name): void
deleteUserType(UserTypeId): void,
viewAllUserTypes(): userTypes[],
viewDisease(DiseaseId):DiseaseviewAllDiseases():Diseases[],
addPalmType(name):void,editPalmType(palmTypeId , name):void,
viewAllPalmTypes():PalmTypes
[]viewUserTypePermissions(): Permissions[],getUserTypeName(): string

Constraints Admin is the main usertype of application

10



Class Name Palm
Super Class None
subclass None
Purpose represent the palms
Collaboration uses IPalm interface and aggregate Account.

Attributes
id: int, number: int
palmTypeId: int, int,userId: int
QRCode: File,Images[]: int

Operation
getPalmType(PalmType palmType): string
add():void
getImages(Image obj): Image[]

Constraints None

Class Name Disease
Super Class None
subclass None
Purpose represent the diseases

Collaboration assisted by infection level ,image class aggregate infection level controller

Attributes
id: int, name:string
treatment:string,infectionLevelIds[]:int
imageIds[]:int

Operation
getAllInfectionLevels(InfectionLevel InfectionLevel):InfectionLevel[]
getInfectedPalms(InfectionLevel InfectionLevel):Palm[]
getImages(Image Image):Image[]

Constraints can’t without image

Class Name PalmType
Super Class None
Subclass None
Purpose class represent the palm types
Collaboration associated by palm
Attributes id: int ,name: string
Operation None
Constraints can’t work without class palm

Class Name Infection Level
Super Class None
Subclass None
Purpose class represent the infection level of a disease
Collaboration associated by palm,associated by Disease
Attributes id: int,name: string,diseaseId: int,imageIds[] : int
Operation getInfectionLevel(Disease),getImages():Images[]
Constraints can’t work without class palm

11



Class Name image
Super Class None
Subclass None
Purpose a class represent Admin image class
Collaboration association with palm,disease,infection level and imagetype

Attributes
id: int, fileName: string, directory: string
extension: string, imageTypeId: int
palmId: int,infectionLevelIds[] : int, diseaseIds[] : int

Operation
getImageType(imageType type , typeId): string,
getDiseaseIds[]:Disease[],getPalm(Palm object): Palm
getInfectionLevel(Infection infection): string

Constraints can’t work without palm class

Class Name Permissions
Super Class None
Subclass none
Purpose represents users Permissions
Collaboration association with Permission

Attributes
id: intname: string
name: string
userTypeIds[]: int

Operation getPermissions(Permission object):Permissions[]
Constraints can’t work without account class

Class Name imageType
Super Class None
Subclass None
Purpose class represent image different types
Collaboration associated by Image
Attributes id: int,name: string
Operation None
Constraints can’t work without class image

Class Name PalmDecroter
Super Class None
Subclass KernafDecroter,FasselDecroter,DatesDecroter,leavesDecroter
Purpose class to get components of a palm
Collaboration aggregates IViewallpalms()
Attributes None
Operation palmDecorator(IPalm): void,add():void
Constraints can’t work without class Palm

12



Class Name KernafDecroter
Super Class PalmDecroter
Subclass None
Purpose class to get kernaf component
Collaboration inherits from PalmDecroter
Attributes None
Operation addKirnaf(IPalm): void,void,add(),removeKirnaf(IPalm): void
Constraints can’t work without class PalmDecorator

Class Name leavesDecroter
Super Class PalmDecroter
Subclass None
Purpose class to get leaves component
Collaboration inherits from PalmDecroter
Attributes None
Operation addleaves(IPalm): void,void,add(),removeleaves(IPalm): void
Constraints can’t work without class PalmDecorator

Class Name DatesDecroter
Super Class PalmDecroter
Subclass None
Purpose class to get leaves component
Collaboration inherits from PalmDecroter
Attributes None
Operation addDates(IPalm): void,void,add(),removeDates(IPalm): void
Constraints can’t work without class PalmDecorator

Class Name ViewAlluserPalms
Super Class IViewAllPalms
subclass None
Purpose view all palms owned by the user
Collaboration extends IViewAllPalms
Attributes None
Operation viewAllPalms(): Palms[]
Constraints can’t work without IViewAllPalms

Class Name SVM
Super Class Iclassifier
subclass None
Purpose use SVM classify Collaboration
extends IClassifier
Attributes None
Operation Classify(): File image

Constraints can’t work without Iclassiefy

13



Class Name CNN
Super Class Iclassifier
subclass None
Purpose use CNN classify Collaboration
extends IClassifier
Attributes None
Operation Classify(): File image

Constraints can’t work without Iclassiefy

Class Name ViewAllSystemPalms
Super Class IViewAllPalms
subclass None
Purpose view all palms in the system
Collaboration extends IViewAllPalms
Attributes None
Operation viewAllPalms(): Palms[]
Constraints can’t work without IViewAllPalms

Interface Name IClassifier
Super Class None
subclass SVMClassifier,CNNClassifier
Purpose interface to make use multiple calssifiers
Collaboration SVMClassifier CNNClassifier extends from it
and aggregate palm owner implemented in Palm Owner
Operation classify(File image):

Constraints None

Interface Name IViewAllPalms
Super Class None
subclass ViewAllSystemPalms,ViewallUserPalms
Purpose interface to view all palms

Collaboration
aggregates with account ViewAllSystemPalms
,ViewAlluserpalms extends it

implemented in infection level
Operation viewAllPalms(): Palms[]

Constraints None

Interface Name IPalm
Super Class None
subclass None
Purpose help to specifypalm parts
Collaboration aggregates with PalmDecroter
implemented in Palm.Palm Decroter
Operation add(): void

Constraints can’t work without palm

14



Class Name Classification Controller
Super Class Controller
Subclass None
Purpose is used to invoke different ai model
Collaboration extends controller
Attributes User user
Operation + classify(File image , String ObjectCaptured, String DiagnoseType);
Constrains can’t without Iclassifier interface

15



Class Name Permission controller
Superclass Controller
subclass None
Purpose used to control user permissions

Collabirations
aggregate usertype,
extends controller

Attributes

+ Model: Permission

+ View: PermissionView

+ UserType: UserType

operations

+ index()
+ create()
+ insert(Request[] Permission)
+ show(int PermissionId)
+ update(int PermissionId, Request[] Permission)
+ delete(int PermissionId)]
+ getUserTypes():UserType[]

Constrains can’t work without permissions model

Class Name usertypecontroller
Superclass Controller
subclass None
Purpose used to control user types logic

Collabirations
aggregate usertype,
extends controller

Attributes

+ Model: UserType

+ View: UserTypeView

+ Permission: Permission

operations

+ index()+ create()
+ insert(Request[] Object)+ show(int UserTypeId)
+ update(int UserTypeId, Request[] UserType)
+ delete(int UserTypeId)
+getPermissions():Permission[]

Constrains can’t work without usertype model

16



Class Name user controller
Superclass Controller
subclass None
Purpose used to control users logic

Collabirations
aggregate user,
extends controller

Attributes

+ id: int name: String
+ email: String password: String
+ email verified at: String userTypeId: int
+ ismale: boolean created at: String
+ updated at: String isdeleted: boolean
+ Palms[]: Palm UserType
: UserType strategy: IVeiwAllPalms

operations

+ setters & getters
+ login(email,password): void
+ isverified(email verified at): boolean
+ logout(): void
+ signUp(name,email,password,userTypeId,ismale): void
+updateUserInfo(userId , name , email,password , ismale):void
+ViewResults(PalmId):void
+ viewPalm(PalmId): Palm
+ setStrategy(IVeiwAllPalms): void
+ getStrategy(): IVeiwAllPalms
+ viewAllPalms(): Palms[]

Constrains can’t work without usermodel

Class Name imagetypecontroller
Superclass Controller
subclass None
Purpose used to control image typelogic

Collabirations
aggregate image type,Disease
extends controller

Attributes
+ Model: Disease
+ View: DiseaseView

operations

+ index()
+ create()
+ insert(Request ImageType)
+ show(int ImageTypeId)
+ update(int ImageTypeId , Request ImageType)
+ delete(int ImageTypeId)

Constrains can’t work without image type model

17



Class Name diseasecontroller
Superclass Controller
subclass None
Purpose used to control diseases logic

Collabirations
aggregate ,disase
extends controller

Attributes + Model: Disease

operations

+getAllInfectionLevels(InfectionLevel InfectionLevel):InfectionLevel[]
+getInfectedPalms(palm[] Palm):Palm[]
+getImages(Image[] Image):Image[]
+ index()
+ create()
+ insert(Request Disease)
+ show(int DiseaseId)
+ update(int DiseaseId , Request Disease)
+ delete(int DiseaseId)

Constrains can’t work without disease model

Class Name infectionlevelcontroller
Superclass Controller
subclass None
Purpose used to control infection levels of the diseases logic

Collabirations
aggregate ,infection level
extends controller

Attributes
+ Model: infection level

+ View: InfectionLevelView

operations

+ getDisease(disease Disease):Disease
+ getImages(mage Image): Images[]
+ index()
+ create()
+ insert(Request InfectionLevel)
+ show(int InfectionLevelId)
+ update(int InfectionLevelId , Request InfectionLevel)
+ delete(int InfectionLevelId)

Constrains can’t work without infectionlevel model

18



Class Name imagecontroller
Superclass Controller
subclass None
Purpose used to control imagelogic

Collabirations
aggregate ,infection level
extends controller

Attributes
Model: image
View: imageView

operations

+ index()
+ create()
+ insert(Request Image)
+ show(int imageId)
+ update(int imageId, Request image)
+ delete(int imageId)
+ getImageType(imageType type , typeId): string
+getDiseases[]:Disease[]
+getPalm(Palm object): Palm
+ getInfectionLevels(InfectionLevel infection): InfectionLevel[]

Constrains can’t work without imagemodel

19



Class Name palmcontroller
Superclass Controller
subclass None
Purpose used to control palm logic

Collabirations
aggregate ,palm
extends controller

Attributes
+ Model: Palm
+ View: PalmView

operations

+ index()
+ create()
+ insert(Request[] Palm)
+ show(int PalmId)
+ update(int PalmId , Request[] Palm)
+ delete(int PalmId)

Constrains can’t work without palm model

Class Name palmtypecontroller
Superclass Controller
subclass None
Purpose used to control palmtype logic

Collabirations
aggregate ,palmtype
extends controller

Attributes
+ Model: Palmtype
+ View: PalmtypeView

operations

+ index()
+ create()
+ insert(Request[] Palm)
+ show(int PalmId)
+ update(int PalmId , Request[] Palm)
+ delete(int PalmId)

Constrains can’t work without palmtype model

20



Class Name controller
Superclass none

subclass

palmtypecontroller
palmcontroller
imagecontroller
imagetypecontroller
usercontroller
usertypecontroller

Purpose a binder for all controllers
Collabirations all controller extends it
Attributes + View: Iview

operations

+ SetView(View IView): void
+ GetView(): IView
+ RequestAccess(PermissionId):Boalean
+ UpdateUI():void
+getUserTypeId(UserId):int
+isPermissionAttached(UserTypeId, PermissionId):boalean

Constrains the design pattern and systen won’t work without it

Class Name ImageView
Superclass implements Iview
subclass None
Purpose it’s image UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

Class Name ImagetypeView
Superclass implements Iview
subclass None
Purpose it’s imagetype UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

21



Class Name Diseaseview
Superclass implements Iview
subclass None
Purpose it’s disease UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

Class Name Diseasetypeview
Superclass implements Iview
subclass None
Purpose it’s disase type UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

22



Class Name PalmView
Superclass implements Iview
subclass None
Purpose it’s Palm UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

Class Name palmtypeView
Superclass implements Iview
subclass None
Purpose it’s palmtype UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

3.3 Operational Scenarios

3.3.1 Sequence diagram

23



Class Name userview
Superclass implements Iview
subclass None
Purpose it’s user UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

Class Name usertypeView
Superclass implements Iview
subclass None
Purpose it’s usertype UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

Class Name permissionview
Superclass implements Iview
subclass None
Purpose it’s permissions UI
Collabirations implementsIview
Attributes None

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without Iview

interfaceName Iview
Superclass controller
Purpose it’s views binder
Collabirations every view implents it

operations

+ Index(Respose: Hashtable<String, Object>):void
+ Show(Respose: Hashtable<String, Object>) void
+ Create(Respose: Hashtable<String, Object>):void
+ Edit(Respose: Hashtable<String, Object>): void

Constrains can’t work without controller

24



Figure 4: Sign up

25



Figure 5: Add Palm Type

26



Figure 6: Delete Palm type

27



Figure 7: Delete user

28



Figure 8: Display all users

29



Figure 9: Delete Palm

30



Figure 10: Display specific user profile

31



Figure 11: Delete Image

32



Figure 12: Expert Diagnose Correction

33



Figure 13: Registration

34



Figure 14: RGB Image Diagnose

35



Figure 15: Thermal Image Diagnose

36



Figure 16: Update Palm Information

37



Figure 17: Update Palm Type Name

38



Figure 18: Update Personal Profile

39



Figure 19: Update User Type Names

40



Figure 20: Update User Type

41



Figure 21: View palm types

42



Figure 22: View users types

43



3.4 Process Diagram

Figure 23: Registration and Login process

44



Figure 24: Palm care Process

3.5 Design Rationale

We use MVC architectural model (MVC) to make our code easy to maintain
and to handle any change of a requirement and it also helps deal with data and
presentation in a separate way ,also we are developing a unique software that
tackles one of the biggest agriculture problems that’s why our software must
be accurate, sophisticated and user friendly as it target a wide demographic

45



of people from experts to normal field owners and farmers, we use two of the
best algorithms to tackle our problem the CNN :deep learning algorithm which
considered to be one of the best image classifier but it’s only problem that it
need large amount of images to work on and the other algorithm is the SVM is
one of the oldest and one of the best classifiers as it use arithmetic approaches
to label or classify.

4 Data Design

4.1 Data Description

Figure 25: ER-Diagram

46



4.2 Data Dictionary

Table Name Description

User

This table describes user information
it is attributes are :
(1)ID
(2)UserTypeId related to UserType
it specifies the user type either palm owner or admin or expert
(3)Name specifies first and last name of the user
(4)email
(5)email verified at specifies the date of mail verification
(6)Password
(7)ismale; boolean attribute which specifies the gender of the user
(8)Updated at used to track the date of any update occurs to user
information, used for security reasons
(9)Created at used to know the date of any new account creation
(10)isDeleted used to know if user information is deleted or not,
mainly used for user information restoration.

Table Name Description

UserType

This table describes user Types information
it is attributes are :
(1)ID
(2)Name either admin or palm owner or expert
(3)Updated at used to track the date of any change in user type
(4)Created at used to know the date of any new user type creation
(5)isDeleted boolean used to know if user information is deleted or not,
mainly used for usertype restoration and for security.

47



Table name Description

Palm

This table describes palm information
it is attributes :
(1)ID
(2)UserID related to user table, each user have many palms
which can view,update or delete according to his usertype
(3)Number, each palm has unique QR code number
(4)isHealthy, Boolean which describes whether the palm is infected or not
(5)Updated at used to track the date of any update occurs to Palm
information, used for security reasons.
(6)Created at used to know the date of any new palm created
(7)isDeleted used to know if palm information is deleted or not,
mainly used for palm information restoration or for security reasons

Table name Description

PalmType

This table describes palm types information
it is attributes :
(1)ID
(2)Name
(5)Updated at used to track the date of any update occurs to PalmType
information, used for security reasons.
(6)Created at used to know the date of any new palm type created.
(7)isDeleted, boolean used to know if any palm type is deleted or not,
mainly used for palm types restoration or for security reasons

Table name Description

Image

This table describes Image information
it is attributes :
(1)ID
(2)ImageTypeID, related to imagetype table, used to know the type of the image
(3)PalmId, used to know which image related to which palm
(4)FileName, used to know the file the image stored in.
(5)Directory, used to know the Directory the image stored in.
(6)Extension, used to know the image extension either JPG, PNG, etc..
(7)Updated at used to track the date of any update occurs to Image
information, used for security reasons.
(8)Created at used to know the date of any new Image captured.
(9)isDeleted, boolean used to know if any image is deleted or not,
mainly used for palm types restoration or for security reasons.

48



Table name Description

ImageType

This table describes Image Type information
it is attributes :
(1)ID
(2)Name, either RGB or Thermal
(3)Updated at used to track the date of any update occurs to Image Type
information, used for security reasons.
(4)Created at used to know the date of any new Image Type is created .
(5)isDeleted, boolean used to know if any image type is deleted or not,
mainly used for palm types restoration or for security reasons.

Table name Description

Disease

This table describes Diseases information
it is attributes :
(1)ID
(2)Name, either Leaf spots, blight spots, or RPW
(3)Treatment, used to know the information about how to treat the palm
according to the palm state
(3)Updated at used to track the date of any update occurs to diseases
information, used for security reasons.
(4)Created at used to know the date of any new disease is created .
(5)isDeleted, boolean used to know if any disease is deleted or not,
mainly used for palm types restoration or for security reasons.

Table name Description

InfectionLevel

This table describes the disease Infection Level
it is attributes :
(1)ID
(2)DiseaseId, related to Disease table.
(3)Name
(4)Updated at used to track the date of any update occurs to Infection Level
information, used for security reasons.
(5)Created at used to know the date of any new Infection Level is created .
(6)isDeleted, boolean used to know if any Infection Level is deleted or not,
mainly used for palm types restoration or for security reasons.

Table name Description

Images InfectionLevel

This table to connect between Image and Infection Level tables
it is attributes :
(1)ID
(2)Image Id, related to Image table.
(3)Infection Level Id, related to infection level table.
(4)Updated at used to track the date of any update occurs to this table
information, used for security reasons.
(5)isDeleted, boolean used to know if any Infection Level or image deleted or not,
mainly used for palm types restoration or for security reasons.

49



5 Component Design

5.1 Image Acquisition

We have acquired a data set of 90 thousand images for leaf spots and blights
from ’Kaggle’ data sets which is an augmented data set that makes a variety
of features in the images for a good feature extraction process.

5.2 Pre Processing

we use a pretraied model VGG16 to help improve the data set with techniques
such as subtracting the mean value RGB then the image is passed through a
stack of conventional layers the n we pass it to small receptive 3x3

5.2.1 feature extraction

as was said we used VGG16[4] which can used to do the feature extraction
for us the needed features extraction the architecture use max pooling layers,
Convolution Layers,Dense layer is used and FC 1000(REF FC) and 4096 layers
and softmax at the end

• Convolution layer:
we used a 13 layers of conventional layers those layers are the one respon-
sible for feature extraction [5]

• Max Pooling layer:
we used 5 max pooling layers and these layers are responsible for sum-
marizing or down sampling the feature map that is extracted from the
conventional layer to get the highest features using a max pooling [1]

• Dense layer:
we used our dense layer to match our classification problem as the dense
layer is the layer to put a limit of classification labels we put a limit of
three choices [2].

5.3 Classification Algorithm

Building a CNN Model upon Keras library [3] that is a deep neural network
well known for it’s best performance with complex image classification and its
capability of improving the efficiency and accuracy of the model when dealing
with huge data sets. Our CNN model is built on pre-structured VGG16 Net-
work that’s known for its well measured layers and parameters. We made some
customizations in some layers in the VGG16 architecture to fit our plant disease
classification case and added some features to the code that makes it computa-
tionally unexpensive, efficiently feature extracting, and predicting the outcomes
in a maximum accuracy depending on the variation and the size of the given
data set.

50



6 Human Interface Design

6.1 Overview of User Interface

The proposed application allows the user to create an account. The application
will allow the user to sign in with his account and then will show a quick tour
through the application to know how to use it. The user will choose which
part of the palm tree he would like to take an image for it (Full palm tree,
Trunk, base, Leaves), this will save processing time. The user will enter palm
information manually or can scan palm QR code to easily fill palm information.
Then the user is going to choose which type of image he is going to deal with, the
application will recommend him to take the palm image using both thermal and
normal images for better results. The user can either take thermal and normal
images using cameras or import his images to the application. The application
will show the results if the palm is infected or not, and infection level in case
of palm infection, also the application will provide some solutions to the user
according to the infection level. Palm information and results will be saved into
the user account and the user can show them at any time.

6.2 Screen Images

Figure 26: Login

51



Figure 27: Sign up

Figure 28: Reset Password

52



Figure 29: Choose palm parts

Figure 30: upload image

53



Figure 31: Results

Figure 32: Sidebar

54



Figure 33: Show user palms

Figure 34: Show by menu

55



Figure 35: Sort by date menu

56



7 Requirements Matrix

Figure 36: Requirement Matrix

57



References

[1] Jason Brownlee. “A Gentle Introduction to Pooling Layers for Convolu-
tional Neural Networks”. In: (2019).

[2] Hunter Heidenreich. “Understanding Keras — Dense Layers”. In: (2019).

[3] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[4] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[5] Matthew Stewart. “Simple Introduction to Convolutional Neural Networks”.
In: (2019).

58


