Guide Me Visual Assistant for the visually impaired

- ► By:
- Kareem Emad
- Shehab Mohsen
- Sherif Akram
- Nouran Khaled

Under Supervision of:

- Dr. Ammar Mohammed
- Eng. Haytham Metawie

Introduction

- Visual impairment is the functional limitation of the eye or eyes or the vision system.
- Globally, it is estimated that approximately 1.3 billion people live with some form of vision impairment.

Global Visually Impaired Population Statistics

Introduction

- Types of visual impairment:
 - Loss of visual acuity
 - Loss of visual field
 - Photophobia
 - Diplopia
 - Visual distortion or perceptual difficulties

Motivation

- Visually impaired or partially sighted people shall have a part in society as well as work independently.
- Visually impaired people would like to have a virtual assistance at home.
- Our work is motivated by both application domain and previous work.

Related Work 1- Intelligent Eye

- The aim of the Intelligent Eye Android mobile application is to combine several features to provide visually impaired people with high quality services.
- The application was tested by 10 people with visible impairments.
- Future work is to add more features.

	Average	Median	Min	Max
Familiarity of the interface	4.4	4.5	3	5
How easy is the application as a whole	4.1	4	3	5
How good is the performance	3.7	4	3	4
How is its responsiveness	4	4	3	5
Clarity of the prompt messages	3.9	4	3	5

Related Work 2- Intelligent Assistance System

- The proposed intelligent assistance system consists of:
 - Wearable smart glasses
 - Intelligent walking stick
 - Mobile devices application
 - On-line information platform
- GPS recordings are saved if a visually impaired person falls or a collision event happens

Intelligent Assistance Scenario

 Future work is to integrate deep learning techniques for recognizing front images and to develop intelligent walking guiding related function

Related Work 3- Computer Vision Technique for Scen Captioning

The method for automated identification involves detecting and categorizing the scene image by point feature matching.

- Speeded Up Robust Features (SURF) algorithm is used to detect strongest points from gray scale image of the scene image and strongest points from template.
- ▶ They achieved an accuracy of 91.67%.

S No	Template Used	Results			
		No of Available Images	Correctly identified Images	Accuracy	
1	Metro Station	20	16	80%	
2	Restrooms	20	20	100%	
3	Pharmacy	20	19	95%	
е. Б.	Total	60	55	91.67%	

TABLE I ACCURACY OBTAINED USING PROPOSED METHOD

Companison

_					
Points of Comparison	Method	Objectives	Accuracy Achieved	Classificati on	Sensors
Intelligent Eye	Mobile Phone	Detecting color, light, objects and banknotes	Good in general and will accepted	CNN	Embedded light sensor
Intelligent assistance system	Wearable smart glasses and walking stick	Detecting objects while navigation	Not Mentioned	Not Mentioned	An IR transceiver sensor module, micro electromechani cal sensor module, gyro and accelerometer
Automated identificatio n of public signs	Images taken from the internet	Detecting common public signs	91.67%	Speed Up Robust Features (SURF)	Sensory system, 3D CMOS linear sensor and 6dof inertial sensor
Our System	Mobile Phone	Guide user to required		YOLO	Mobile camera and sensors

Problem Statement

- Visually impaired people suffer multiple problems in their everyday lives while doing their daily chores
- They are always in danger of hurting themselves by hitting an obstacle while they are moving around
- Finding an object would be very difficult if they don't remember its specific place

Problem Statement

- Recent work used wearable kits to detect objects using sensors.
- The reached automatic detection of objects is still not optimized.
- Object identification and allocation was not included.

Scope

- The system will cover in its scope:
 - Scanning frames captured by user.
 - Localizing the indoor surrounding.
 - Safe navigation for the user to allow him to freely roam.
 - Alert user if there are near objects that are in his way.
 - Search for the required object when asked to and provide best route.

System Overview Input

- Choice of module.
- 360° video of the room
- Audio of the user's choice for finding an object or free roaming or adding a new personalized object.

System input processing

- The audio input is processed to remove background noise and enhance audio quality.
- The video is processed frame by frame to enhance detection results.
- All objects appearing in the video are stored along with their distances.
- The user can choose recognizing new objects and is prompted to capture his item of interest to be stored along with the existing dataset along with a label of his choice.

System Overview Processing

- A localization matrix is constructed using the detected objects and obstacles and their distances with the user as it's center.
- The System then analyzes all possible routes in the room.
- The system recognizes the user's movements using the phone's pedometer, then localizes his current position on the matrix and alerts him if he is moving to a blocked position on the matrix.

System Overview Processing

- If the user chooses a certain detected object, the system guides him through speech output to the best route to the object.
- The system notifies the user that he has reached his object and allows him to find another object or enter free roaming mode from his current position.
- The system allows the user to add new objects to the existing dataset in order to personalize the project to his lifestyle and daily items.

System Overview Output

- Audio output to provide directions for the best route to object.
- Audio output to provide alerts if the user is about to hit an obstacle or unknown territory.

Thank You