Software Proposal Document for project
Automatic Recognition Of Suitable Design
Pattern

Clara Kamal, Farida Mohamed, Hashem Mohamed, Veronia Emad
Supervised By: Dr. Taraggy Mohiy and Eng. Nada Ayman

October 18, 2019

Abstract

According to the English dictionary, Design Pattern is defined as a for-
mal approach of recording a generic reusable solution to a design problem
in a specific environment. Software design pattern is considered as one
of the most productive discoveries in the software industry since it has a
major role in improving the software quality. However, choosing the suit-
able design pattern for each design problem is not that clear and effortless
but requires a good base knowledge about each DP and its functionality.
In this system, we aim to produce an automatic approach that supports
the suitable selection of a design pattern depending on the requirements
of the user using a Question/Answer approach. Moreover, the system will
provide the user with the class diagram depending on the selected de-
sign pattern. The system will process the user’s input through a tree-like
model to reach the most accurate selection.

1 Introduction

1.1 Background

Software design patterns (DP) are a set of documented solutions to common
software design problems that software developers face through their code con-
struction repeatedly. DP were first popularized by the four authors Gamma,
Helm, Johnson and Vlissides [4] that defined 23 design patterns. Therefore,
they were known as the Gang of Four (GoF) and were classified to creational,
structural and behavioral according to their scope, purpose and their level of
abstraction. They are not considered as finished designs to be used directly in
a machine code but as ready-made templates. According to [4], each of these
templates are documented in a format that holds mainly a "pattern name”,
"intent”, "motivation”, “structure”, "participants”, "known uses”, "implemen-
tation” and "a sample code”.

As maintainability and re-usability are from the main concerns of software
engineering life cycle, selection of the suitable DP is considered as one of the
most critical and challenging phases since they are reusable object-oriented solu-
tions. They improve the understandability of code, deal with hidden issues that
appears in the future, simplify and accelerate the development process. More-
over, the selection of the suitable software DP can cause confusion to software
developers because there are several design patterns that may seem similar in
their purposes and actions. As an example, there are two design patterns that
are object creational design patterns which are Factory DP and Builder DP but
the key difference is how the object is being created. Furthermore, using the
wrong design pattern which is known as anti-pattern, makes the design pattern
worse than using no pattern at all. Therefore, determining the suitable DP
needs to identify the scenario and the problem and to have a good knowledge
base about each DP and their functionalities in order to make the most efficient
and accurate decision.

Background

Design Stuture ~ Function | Context Challenge | Skils | Signatwe |Scope
Patterns: “Send Feedback’ “View
Wirgchart"
1]Adaptor Wrap a legacy object that | To access a Therequirementfor — Tomakethe | *Toinitialize | Adapter references (or General_
provides an incompatible | foreign conrete type fferent type | Adaptor ontains) (Preferaby
interface with an object mplementation of | implementation is already ' substtutable Adaptee, representing it | languages where late
that supports the desired | nafive met, but by & non-native | within the native | *To implement | Adapter implements | binding is dbligatory)
interface functionglity | type interface The Native | Interface. Adapter
Interface | references (or contains)
Adaptee, representing it
Adapter implements
Interface
Z)Fa;ade Wrap a complicated
subsystem with an object
that provides a simple
interface
3]Proxy Wrap an object with a
surrogate object that
provides additional
functionglity

4)5“319 Define algonthm interface in | To reconfigure | "Dynamic classification”. | To encapsulate | *Toinitialize | Context refarences General
gy . . . :
2 base class and discrete The implementation of & | the specific context global (In
mplementations in derived | functionality discrete object behavior | behavior, To Strategy. Altemnatively, | dynamically-typed
dlasses (typically lessthana | makeiteasly | *Topreform | Context contains languages, instance
method) is determined | replaceable partially Strategy (which contains | method override
during its creation and configurable-ac | data) may do)
may be reconfiqured tion
later (&.g. formatting, in
& configurable
environment)
5)Factor',f Define "create Instance To construct Creatinganobjectby |tocreatethe | *Toabtain | Factory Method (typically | Languages that that
laceholder in the base class, | objects by fixed | fived criterion. Possibly | object without | cancrete Singleton) creates lack the class
Method each derived class calls the | type criterion reconfiguring it later specifyingits | product Products for Client, Each | object. (Elseivhere,
“new" operator and returns type Concrete Factary Method | where objects are
an instance of itself Tocreste | isbuilt to produce the | created by defaut, a
product respective Concrete | global reference to
Product, In the extreme | the respective class
case, Concrete Factory | object will suffice)
Method is parameterized
over Conerete Product
B)Visitor Define "accept’ methodin | To assign discrete | Some palymarphic To add the Topreform | Visitar processes Subject | Languages that do
first inheritence hierarchy, | functionality by | processing is virtugl function | configureble | by requesting Subject to | not support
define "visit" methods in object type configurable and, hierarchytoa | operation over | "accept” it (the multi-methods (most
second hierarchy ... a.k.a. therefore, may notbe | class hierarchy | heterogeneous | Visitor). Concrete commercial 00
“double dispatch’ part of the processed | without opening | collection Subject, requests Visitor | languages).
type family (&.0. it to "visit" it (the Concrete | The Visitor is really 8
formatting, user Subject) multi-method over
interface). Processing Concrete Visitor and
depends as much on the Concrete Subject
rOCESSOr type as on the types).
processed type and must Bspect oriented
bie done by the programming attacks
PrOGESSOr, the prablem by from
another diraction,

; The "reader” delegates to its
?]Bu"der configured "builder”
each builder corresponds to a
different representation or
target
E]State The FiniteStateMaching Toswitch among | Dynamic classification”: | *To encapsulate | *Toinidialize | FSM contains States, | General
delegates tothe "current” | alternative Object that receives 3 | state state machine | references the current
state object, implementations | small number of management State and interfaces for
and that state object can set | of an entire messages, but the entire “To respond to | &
the "next" state object functionality set of methods it uses to *To virtual 0
¥ event
respupd to them depends replece an
Lpon Its current state 0hject's Ef'fELTi\I'E
virtual table
Q]Bridge The wrapper models To separate choice | Two alternative To base the To create Behavior contains
“abstraction” and the of implementation | classification schemes | designonone | configured Implementztion. Client | General
wrapper modls many from interface seem equally valid (e.g. | classification behavior uses Concrete Behavior
possible "implementations” stream opened for either | while retaining and typically provides
the wrapper can use input or output and also | the latter the Concrete
inheritance to support encapsulates a specific | Possibly, to allow Iﬁ&:hé%?tion Implementation
abstraction spacialization device]. A replacement | the latter to vary
for multiple inheritance, | during object
possibly with dynamic | lifetime
dlassification
IU]Observer The "model" broadcasts to | Tosynchronize | "Controlled data To keep the *To prepare for | Subject references Gengral
many possiole "views", state change redundancy": The state | dependent subject change | notifiers, each
and each "view" can dialog of one object must reflect | object referencing an observer
with the "mocel" the curent state of up-t_ﬂ-date g, change
another object (2.0, minimum cost, subjec state
document and its views, | (The alternative
server and its clients, the | of polling the
result of & formula and its | data source by
values in a spreadsheet) | its observers is
both expensive

and intrusive)

11) it Derived C ites contain | To traverse a A recursive object *To traverse the | *To process Both particular Leaves General
! ' one or more base recursive structure {e.g. file structure node heterogenecus | and default Composite
Components, structure directory tree) has to be | by node, subtree are Concrete
each of which could be a uniformly traversed from the ignoring node Components. Composite
derived Composite outside (e.g. view type (possibly contains (or references)
traversing its document), | applying Components.
applying routine operations that The Particular
functionality (e.g. affect the Composite may choose
formatting for display) integrity of the to imit the scope of the
structure) inhented association
(see rectangular
inhentance of
gg\l;ur?:d‘:s, association).
ignaring Mode
type (counting
on automatic
validation)
12}Dncnralnr A Decorator contains a single | To enhance "Dynamic and multiple *To encapsulate | *To decorate Decorator is a concrete | General
base Component, discrete classification”: The the difference in | concrete Subject and references | (Preferably,
which could be a derived functionality implementation of some | behavior without | subject (another) Subject, languages where |ate
Concrete Component or dynamically facet of behavior may be | modifying the interfacing for it. binding is obligatory)
another derived Decorator extended duning its subject. To make | wqy oo Concrete Decorator
object's lifetime the extended subject derives from Decorator
functionality
over the subject
substitutable
with the subject
*To practically
replace an object
base (setting it
to an existing
object)
*To replace
super call by
delegation
& Define "linked list™
13:'Cha"1 Of) functionality in the base class
Responsibilities | and implement "domain”
functionality in derived
classes
14}Interpreter Map a domain to a language,

the language to a recursive
grammar, and the grammar
to the Compesite pattern

15)Command Encapsulate an object, To separate Initator of action cannot | Toencapsulate | *Tocreate | Invoker containg Languages that do
the method to be invoked, | requestfrom | (or need not) be therein | theexecution | execution | Commands, Concrete | not support bound
and the parameterstobe | execution tirme to launch the action | request with its | request Command References | methods | delegates,
passed befind the method (.0, scheduling, argquments (and Receiver, Client General (when
signature "execute” seecton from menu. | possbly sundo | eg, o | rferences (orcontains) | involing more s
Possibly, action may be | arquments) execin both Receiver and or functionality then
undone [ater request Invoker, createsthe | just the receive,
s _
Commend and registers | method and
It with Invoker invoke-time
arquments)
16]Iteratur Encapsulate the traversal of
collction dlasses behind the
interface "first. next. s Done”
17)Mediator Decouple pegr objects by
encapsulating their "many to
meny" linkages in an
interrecfary object
| 18)Memento Encapsulate the state of an
existing object in a new
object to implement 3
"restore” capability
19]Pmtotvpe Encapsulate lge of the "new” | To create objects *_Selecting objects by To_cap\,f _each Toprepare | prototype responds | General
operator behind the method | by example visual example, dbject without | example set | to clone message, (Preferably,
signature “clone” ., clients having to tell its retuming base object | Janguages that
wil] Gelegate toalProtob;pe #Creaing objects by type suppartl
object when new instances content e thn deep-copying by
are required boel default)
*Copying heterogeneous

collections.

ZO]SingIetcn Engineer a class to To encapsulate a *4 software module (in *To guarantee *To assess Added static instance Languages that do
encapsulate a single instance | globally-available | languages that do not the existence of | singleton method, static singleton | not support
of itself, and “lock out” clients | resource support modularity) only one instance instance, private modularity
from creating their own singleton object constructor and possibly
instances *4 generally available destructor

part of the programming | *To complete the
infrastructure whose construction of
existence is taken for the singleton
granted by the instance prior to
programmers who use it | its first use

*& non-procedural flow of

control implicit in the

construction of

infrastructure

components prior to the

main program

21)Abstract Model "platform” (e.g. To construct *Creating objects by two | To encapsulate *To obtain Abstract factory General

windowing system, operating | objects by critenia: Base type the decisions in concrete responds to creation
Factory system, database) with an criterion and (Known to the a single object product messages explicitly
inhertance hierarchy, and preconfigured application) and named after each
model each “product” (e.g. type environment *To create conceptual product
widgets, services, data (preconfigured). (E.g. product type. Each
structures) with its own cresting GUT controls, concrete factory
hierarchy ... platform derived given control type and implements this
classes create and return knowing the GUI system interface for a concrete
instances of product derived being emulsted) environment. The
classes products are arranged in
"An array of factory respective discrete type
methods with the same families where
implementation arvIonmont)
criterion. (Same example implementations derive
as above, where the need from product
for ezch control type has
arousad on a separate
occasion)

ZZ]TempIate Define the “outling” of an To outline and "inhentance of process™: | To avoud *To execute 8 | Processor features the General

algorithm in a base class ... guarantee the A type family shares a repetition of the | generic template method

Method common implementation is execution of a sequential process with entire process in | process (which should not be

staged in the base class, QENEric process one or more stages being | all wirtual) as well as one or

peculiar implementation is type-specific implementations more "primitives” -

represented by “place virtual (possibly

holders™ in the base class and abstract) functions,

then implemented in derived typically private.

classes Concrete Processor
implements the
primitives

23)Flyweight When dozens of instances of | To prevent Objects are heavyweight | To prevent *To prevent Flyweight contains General
a class are desired and redundant or encapsulate resource redundant Smart Pointer Counters
performance boggs down, creation of global | system-critical resources | duplication, creation of by key, creates
externalize object state that | resources and are read only system wide global Resources (which it
is peculiar for each instance, ressurces keeps via the Smart

and require the client to pass
that state when methods are
imvoked

Pointer Counters) as well
as Smart Pointers (which
it does not keep) that
share a Smart Pointer
Counter. Smart Pointer
Counter contains a
Resource and notifies
the Flyweight. Client
uses Smart Resource
Painters, obtained from
the Flyweight

1.2 Motivation
1.2.1 Market Motivation

Have you faced a problem before while choosing the suitable software
design pattern for your system?

® Yes
||ll!l| ® No

Have you faced a problem before while creating the correct class
diagram of your system?

11 responses
@ Yes
36.4% @ No

11 responses

63.6%

Have you ever discovered after writing your code that you used the
wrong software design patterns?

11 responses

® Yes
@ No

10

Do you prefer automatic or manual selection of software design
patterns?

11 responses

@ Automatic Selection
@ Manual Selection

11

Do you prefer automatic or manual creation of class diagrams?

11 responses

@ Automatic Creation
@ Manual Creation

If there's a system that helps in selecting the suitable software design
patterns or creating the class diagram, Will you use this system ?

11 responses

® Ves
® No

12

From your point of view, which input format would help in
getting the most accurate results (Ex: Q/A
approach,Document File...etc.)

® QA
@ FormalDocum...
® QA+FormFilling

13

How likely is it that you would recommend this system to your
colleagues ?

11 responses

6
5 (45.5%)
4
3 (27.3%)
2
0 (0%) 0 (0%)
0 | |
1 2

1.2.2 Academic Motivation

Design pattern selection is considered one of the most critical and confusing
phases of software development.So the purpose of this approach is to determine
an efficient accuracy that most of the previous researches didn’t reach. This
approach aims to aid software engineers in selecting the suitable design pattern
despite their knowledge about it.one of the main factors that influence this
approach is that there are very limited researches about automatic selection of
software design patterns.Also few researches have tested their approach on the
most common 23 design patterns which gives our approach more accuracy level.

1.3 Problem Definitions

Software engineers encounter several problems while developing any system .
These problems not only affects the performance of the software engineers but
also cost them a lot. As an example, Software maintenance can become in-
tolerable and expensive. After designing and implementing a system, software
engineers may discover that there are some problems that can let them re-design
and re-implement their system as in ignorance and misapplication of appropri-
ate design patterns during the early phases of design and development. Software
engineers also encounter communication complication. Because each software
engineer has his own way in designing and implementing, which consume a lot
of time and effort to explain it to another software engineer working on the same
system. Long codes are also one of the main problems that software engineers
encounter because they have an extremely poor rate. Software engineers find

14

3 (27.3%)

it hard to explain their purpose from the code to someone learning this code
because of its complexity. Software design patterns comes up with solutions
to all the problems that software engineers encounter. They do assist to write
more understandable code with useful names for what software engineers are
trying to accomplish. They allow the code to be maintained easier because
it is more understandable. They help software engineers in delivering design
goals amongst other software engineers. They present the intention of their
code instantly to others. They allow writing less code because more of the code
can derive common functionality from common base classes. Almost all of the
design patterns are tested, proven and sound.

2 Project Description

The system aims to provide an automatic selection of the suitable design pattern
that is more accurate than the manual selection for the software developers who
need help in selecting the design patterns because of their low knowledge about
them. In order to provide that, the software developer needs to fill a form of
questions that's designed upon the definitions of all 23 design patterns then the
system will extract the developer’s requirements from his answers. Next, these
requirements are processed through a dictionary made of the design patterns
documented templates and the weights of the answers are calculated until it
reaches a suitable design pattern for the developer and finally generating its
class diagram using the plug-in Plant UML.

2.1 Objective

The system is developed in a form of an assisting tool for software engineers. It
will help them in selecting the suitable software design pattern and create its
class diagram according to their requirements accurately.

2.2 Scope

e The system will provide an automatic selection of the suitable design pat-
tern according to the user’s specific design problem.

e The system will create a class diagram depending on the design pattern
chosen.

15

2.3 Project Overview

2R

Al

™~
Y
. Relations
Generating ‘
Software Form Next Question Design
Engineer (Q/A) L) Pattern
Filling The Form Output

ch“onar, List of Objects
Feature Weight
ex‘lraction calculation
Tree Like Model
« i
| PLUG-IN_. |
PUML

Class Plug-In File
Diagram (PlantUML) Generating Formatted

Qutput Applying API Description Puml File

Similar System Information

. User Requirements To Class Diagram Analysis :

A system proposed by Hatem Herchi, Wahiba Ben Abdessalem.[6] The
system proposes an approach to help class diagram extraction from textual
requirements using NLP techniques and domain ontology.They used Gate
Framework which is an open source framework developed using the Java
programming language. It provides a set of natural language analysis
tools which can take English language text input and gives as a result
the base forms of words, and mention which noun phrases refer to the
same entities. It provides an (IE) information extraction system called
ANNIE which is (A Nearly-New Information Extraction System) which
provides multiple language processing methods as Sentence splitter, Parts
of speech (POS tagger) and Syntactic parser. The system has several
steps to generate a class diagram . These steps starts with The NL (
Natural Language) analysis block processes the requirements descriptions
submitted by the user using the framework GATE, and specially Sentence
splitter. Candidate classes are extracted by checking the noun phrases
in the requirements text. Candidate relationships can be detected in the
same way by checking verb phrases. They used domain ontology which
supported their system by excluding the unrelated elements, and then
preserved the convenient elements to be processed to generate the class

16

diagram. The system has 83 % Recall and 93% Precision.

. Automatic Transformation of User Stories into UML Use Case Diagrams
using NLP Techniques:

A system proposed by Meryem Elallaouia, Khalid Nafil, Raja Touahni[7].
This System propose a technique of transforming user stories into use
cases .They achieved this by using natural language processing (NLP)
techniques, by applying TreeTagger parser. They have obtained precisions
between 87% and 98%. The Transformation Process have some features
, the first step is preprocessing of text file that contains a set of user
stories. Followed by an algorithm that removes all unimportant words.
After that the new file is parsed by TreeTagger parser which creates parse
tree for each user story, through which noun , proper noun, determiner
and verb can be selected.This parse tree helps the extraction of actors,
use cases and their associations relationship by the plugin that they have
implemented .To obtain UML use cases diagrams automatically from user
stories, Their plugin receives only sentences that comply with the pattern
proposed by Wautele[4]: As a(n) for the actors, I want to , I can , I am
able for the actions, and so that for the benefit. Their Future work will
be based on addressing other types of relationship, such as generalization
and specialization between used cases and actors.

. Recommendation System for Design Patterns in Software Development
(DPR):

A system proposed by Francis Palma, Hadi Farzin, Yann-Gael Gueheneuc
[8]. The main purpose of this system is that software maintenance can
become tiresome and expensive because of using inappropriate design pat-
terns during the initial phases of design and development, which would be
determined by recommendation systems for software engineering which
can assist designers and developers with several activities that include de-
sign patterns suggestions. This System provides a Design Pattern Recom-
mender(DPR) process overview for software design to recommend design
patterns, depending on a simple Goal-Question-Metric (GQM)approach.
The results that were gained with DPR illustrated that the system can
draw a clear conclusion that DPR is more efficient with a few additional
features, in comparison to another System as ESSDP, ReBuilder and Rec-
ommender System regarding flexible weighting scheme and models refac-
toring scope.

The system detected the appropriate design patterns with 50% of the
trails, It depended on the knowledge of the user that tested the system.
This table explains more about the results,the correct answer was Adapter.

. Dynamically recommending design patterns:

A system proposed by S. Smith, D. R. Plante[9]. This system was de-
signed because of that many programmers that have knowledge of design
patterns, whether they are rushed to meet deadlines, inexpert in their im-
plementations, or unaware of a certain patterns , pattern implementation

17

may be unnoticed. This System dynamically search for certain gesture
that would aid a programmer by using a specific design pattern and make
the relevant recommendations throughout code development.As acclaimed
by Dong et al.[3], rather than dealing with source code directly, almost
all pattern’s search algorithms use some form of average code represen-
tation. They used The Abstract Syntax Tree (AST) which is a directed
acyclic graph, where each and every node shows a programming element
and its children are the elements which belongs to a part of it . They
used Brute force algorithm and an another algorithm which is similar to
BFS (breadth-first search), Which was used to check for every permutation
(rearranging) of the nodes in the graph and whether it matches the anti
pattern matrix or not.” K-Steps” shrinking was used to work with a less
classes at a time. Only the classes that are being modified with those
"close” to them, should be inspected for pattern matches.

. Automatic Recommendation of Software Design Patterns: Text Retrieval
Approach and Topic Modelling for Automatic Selection of Software De-
sign Patterns:

A system proposed by Abeer Hamdy and Mohamed Elsayed [5] for the
automatic selection of the fit design pattern (DP). The motivation for this
system is that it allows the developers to describe their design problems in
natural language and that the task of design pattern recommendation is
analog to the text retrieval task. So, it solves the problem of the difficulty
in choosing the right DP for a given design problem due to the existence
of a large number of DP and to help the novice software engineers. The
system used 2 textual datasets made manually, one for the 14 patterns
from the catalog of GoF design patterns and the other includes 32 real de-
sign problem scenarios collected from various sources. It mainly compares
the problem scenario after preprocessing it, with the patterns’ distinc-
tive words then detects the suitable pattern by checking the occurrence
of the same patterns keywords in the problem scenario (it must include
words from the design pattern description). They achieved this by using 7
mechanisms, which are: Tokenization, Noise Removal, Normalization then
Porter stemming algorithm for text preprocessing. Indexing and Feature
Selection by VSM like unigrams and bigrams to distinguish between the
different patterns that have similar keywords. TF*IDF (Term Frequency
Inverse Document Frequency) weighing mechanism was also used to en-
hance the performance of the text retrieval process. At last they used
Similarity Measure using Cosine Similarity (CS) to retrieve the suitable
design pattern.

This approach managed to find the right design pattern with accuracy
65.5%. Then it was enhanced later in the same year by 72%, which oc-
curred by proposing a new approach which is (Topics and Unigrams). It
was improved the natural language toolkit NLTK for Pre-processing and
Genism was used for training the LDA topic model to discover the hidden
semantics in a text through relating words with similar meaning and used

18

the Improved Sqrt-cosine similarity instead of CS.

i. Software design patterns classification and selection using text categoriza-

tion approach paper:

A system proposed by Shahid Hussain, Jacky Keung and Arif Ali Khan[10].
The system’s main motivation is to automate the suggestion of appropriate
design pattern(s) according to an assumed design problem in the design
phase of software development and to overcome the multi-class problem
and to improve learning precision. This solves the issue of a designer with
the lack of experience with design patterns has concerns how to find the
best one. The system contribution was a new feature selection method
(i.e. Ensemble-IG) using a leveraged scheme IGFSS (Improved Global
Feature Selection Scheme). It ensembles the one-sided feature selection
method OR (Odd Ratio) and global feature selection method Information
Gain(IG) regarding the work-flow of leveraged scheme IGFSS.

The dataset included three frequently used design pattern collection, Gang
of Four (23 design patterns), Douglass design pattern collection (34 design
patterns) Security design pattern collection (46 design patterns).

The proposed approach has formulated in three phases:

(a) Preprocessing Using JPreText
i. Remove frequent words that carry no information
ii. Word streaming using Porter’s stemmer stemming algorithm.
iii. Indexing Documents and VSM
iv. Assign Weights to Features (Binary, Term Frequency (TF), Term
Frequency Inverse Document Frequency (TFIDF), Term Fre-
quency Collection (TFC), Length Term Collection (LTC), and
Entropy)
v. Feature selection method
(b) Patterns Organization employed for two purposes:
i. Group the similar patterns and referred each group as a design
pattern class.

ii. Determine a candidate design pattern class, closer to the de-
scription of the given design problem, recommended by Fuzzy
c-1means.

(c) Design Pattern Selection using Cosine Similarity (CS).

19

I
Diesign Patterns I :: Preprocessing = Design Problem
Collection

________________ -
I Phase 2 (Patterns Organization) |
! |
! I
! I
! 1
I Creanonal Design Paserns. |e‘
! I
! s y !
! " s, e, I
1 lemed e e d |
I {High) Class Membership Value presemt the asscciation betwoen Design Problem and Candidate Pmttens Class I
| S g g g e —— 4

oo - ——

| Phase 3 (Patterns Selection) .

I

1 . |

Semilarity Measare and Abstract Factory, Builder, Factory |

| Opticas Method, Prototype. Singleton :
I

| |

7. A GQM-based Approach for Software Process Patterns Recommendation:
A system proposed by Z. Meng, C. Zhang, B. Shen W. Yin [11] for
a recommendation system for the software process patterns based on a
Goal-Question-Metric approach. The system consists of 2 phases, Q/A
designing phase and pattern recommendation phase. The Q/A designing
phase contains 4 steps. First, preprocessing of the process pattern library.
Then, building a topic model and get text-topic probability distribution
matrix by applying Latent Dirichlet Allocation on all software process
patterns scenario descriptions. Next,calculating sentences clustering us-
ing K-means algorithm to probability distribution matrix with k=25 and
calculating topic similarity using Euclidean distance on vectors in matrix.
Finally, designing of the questions from each cluster of pattern descriptions
then assigning a right answer to each question on every related pattern.
The second phase which is the recommendation of the pattern depends on
the answers. It starts by recording the weight of each answer, calculating
all the matching degrees between patterns and questions then selecting
the top five process patterns. The system designed 57 questions for 89

20

patterns. The system was evaluated by comparing it with similar systems
of the statistics method based on TF-IDF and the evaluation results show
that this approach contributes a high F-score which is 11.6% higher than
that of the traditional TF-IDF approach. Moreover, the average precision
can reach 57%.

. Software Design Pattern Recognition using Machine Learning Techniques:
A system proposed by A. Dwivedi, A. Tirkey, R. Ray and S. Rath [1] has
been developed to recognize the design patterns using machine learning
techniques. It helps in clearing away the issues occurred in reverse engi-
neering which are false positive and false negative issues using the classi-
fication techniques such as Layer Recurrent Neural Network (LRNN) and
Decision Tree on Abstract Factory and Adapter patterns. Its first step is
to start preparing the dataset used in training by defining the patterns
using their template elements and considering their structure and behav-
ior. Next, it defines each pattern classes then constructs object-oriented
metrics-based feature vectors. This process is done by providing an open
source software, JHotDraw, to a detection tool, such as similarity scor-
ing algorithm, Web of Patterns Metrics and Architecture Reconstruction
Plugin for Eclipse, to extract the pattern instances and providing the
same open source software to JBuilder tool simultaneously to extract the
matrices- based candidate classes. Subsequently, the extracted informa-
tion will be mapped together to create feature vectors. Finally it starts
preprocessing these metrics-based dataset, 80% for training and 20% for
testing. The second step is detecting the design pattern by checking if the
pattern participants are available in source code are instances of the ac-
tual software patterns or not. This process starts by learning the metries-
based feature vectors by concerning LRNN and decision tree classifiers to
identify explicit boundaries between classes. Then the recognition of the
design pattern is done by checking the composition of pattern participants
available in training dataset against learned design pattern participants
and ve-fold cross-validation has been performed to remove undertting and
overtting from the selected models. Finally the results obtained are vali-
dated. This approach used some parameters to evaluate their system and
they are precision, recall, F-measure and a confusion matrix to calculate
the system’s accuracy. As a result of this approach, it was found that
this system have got better results of precision than the previous simi-
lar systems since the adapter pattern produced 100% accuracy using both
classifier while the abstract factory pattern produced 100% accuracy using
LRNN, 97.7% using decision tree on the testing dataset and 99.4% using
decision tree on the training dataset.

This system used the reverse engineering approach, known as backward en-
gineering or design recovery process, that depends on reversing the phases
of the software creation and starts with taking an existing product as an
input. Although reverse engineering takes less time than forward engi-
neering in development, reverse engineering have some risk factors that

21

makes it difficult to retrieve the original design of the existing product
such as the loss of embedded business knowledge and difficulty to retrieve
an efficient design and requirements.

Preparation of Training Dataset Software Design Pattern Recognition
Software Perform Perform Machine
Patterns Preprocessing on 2| Learning on
Definition Pattern-based Data Metrics-based Data

L

2 Perform Cross-

Selection of Preparation of Perform Software Validation for
Patterns 21 00 Metrics-based Design Pattern = Result
Participants Feature Vectors Recognition Process Conformance

Fig. 3. Presented Software Design Pattern Recognition Model

3.1 Similar System Description

A similar approach to our approach concerning selecting the suitable design
pattern is Goal-Question-Metric (GQM) approach. It is an approach to software
metric that has been promoted by Victor Basili[2] and Software Engineering
Laboratory at the NASA Goddard Space Flight Center. It is based upon the
assumption that for an organization to compute in a determined way it must
first determine the goals for itself and its projects, then it must trace those goals
to the data that are expected to illustrate those goals operationally.It consists
of Conceptual level (Goal), Operational level (Question) and Quantitative level
(Metric) which is a set of metrics, based on the models, is associated with every
question in order to answer it in a measurable way.

Another similar systems used different techniques to detect design patterns
and create class diagrams automatically. There is a system developed by Hatem
Herchi, Wahiba Ben Abdessalem || which extract textual requirements and gen-
erates a UML class diagram from it using NLP and domain ontology. Another
similar system is automatic recommendation of software design patterns using
text retrieval approach, where the design problem scenarios are illustrated in
natural language (NL). A vector space model (VSM) was generated for the
catalogue of design patterns. A vector of features composed of unigrams and
bigrams are generated for the stated design problem scenario.[4]

22

3.2 Comparison with Proposed Project

Comparison with Proposed Project

Functionality

Techniques

Dataset

Results

The system proposes an)
. approach to help class Sentence splitter, Parts of The system has 83%
From User RequirementsTo | ./ , Eleven rules proposed by | Recall and 93%
. diagram extraction from | speech (POS tagger) and .
UML Class Diagram . . : . Chen[] Precision
textual requirements using | Syntactic parser.
NLP techniques and
domain ontology
Automatic Transformation of |._. n atu‘ra] language Unifying and Extem.iing Thee system has
. . This System propose a processing (NLP) User Story Models, in - -
User Stories into UML Use techniaue of transformine | techni Advanced Informati obtained precisions
Case Diagrams using NLP CEAIGUE o7 Frafisiorining - feclnques e between 87% and
. user stories into use cases Systems Engineering by
Techniques . . 98%
3-TreeTagger parser Wautele[]
This System provides a E. Gamma, R. Helm, R. This system detected
Recommendation Systemfor | "¢ to recommend Johnson, and J. Vlissides. | the appropriate DP
. L design patterns, depending | Goal-Question-Metric Design Patterns: with 50% of the
Design Patterns in Software) . Elements of Reusabl il Tt devended
Development: An DPR on a simple (GQM) lements of Reusable trails, It depended on
N Goal-Question-Metric Object-Oriented Software. | the knowledge of the
(GQM)approach. user
Text processing:
Tokenization, Noise
, . Removal, Nor) o 14 patterns from the This approach
Automatic Recommendation JPorter stemming taloe of GoF desi d to find th
of Software Design Patterns: | Describe the design algorithm caaiog 0 esIEn rlanagec’ 10 ‘
. . patterns and the other right design pattern
Text Retrieval Approach and | problems in natural X , ; .
. e . includes 32 real design with accuracy 65.5%.
Topic Modelling for language to choose the Indexing and Feature . .
. . . . T problem scenarios collected | Then it was enhanced
Automatic Selection of appropriate design pattern | Selection by VSM . .)
. from various sources. later in the same year
Software Design Patterns by 0% '
Cosine Similarity (CS) C
TF*IDF weighing
mechanism

23

Preprocessing Using
JPreText

Porter’s stemmer
stemming algorithm
automatethe suggeston of E;;dmg Documents and Gang of Four (23 design | This paper mention
Software design patterns appropriate design patterns), Doug]ass design | that Iti'.ley 501 ahigher
classification and selection | pattern(s) according to an | Binary, Term Frequency pat?em colleton (34 | Precsonin o
, . , . : | design patterns) & Security | technique was used
using text categorization assumed design problem in | (TF), Term Frequency desi .
.) ign pattern collection | however the
approach paper the design phase of Inverse Document X ,
software development Frequency (TFIDF), Term (46 design patterns) perce‘ntage vt
Froquescy Callocion mentioned
(TEC), Length Term
Collection (LTC), and
Entropy
IGESS (Tmproved Global
Feature Selection Scheme
)
This Syviem dynamically The Abstract Syntax Tree
search for certain gesture (AST)
ﬂ::t m;]uie?li::u inoa Braute force algorithm and | Problems to be solved
Dynamically recommending Epegi?c desien a:::i and another algorithm which is | while code development A
design patterns R similar to BFS
. readth-first search Anti Pattern detection
recommendations
throughout code . L
development K- Steps shrnking

24

Automatic Recognition Of
Suitable Design Pattern (Our
System)

Qur system detects the
suitable design pattern
using question and
answers approach

generates UML class using
AP|

Goal-Question-Metric
(6Q\)

Using our own dataset
hased on Gang of Four (23
design patterns) as a
theoretical reference and
other online resources

Toachieve higher

accuracy

Togain independent
efficient results

25

4 Project Management and Deliverables

4.1

201 R

Information Gathering
"Presentation Skills" Lecture
Registering Project Idea
"Writing Paper Skils" Lecture
Proposal Evaluation

Datasat Collection

System Design and Implementation Preparation
Submit Contribution or Survey Paper
Preparing SRS Document

SRS Evaluation

Preparing SDD Document

§DD Evaluation

System Implementation

Prototype Evaluation

"Writing Final Thesis Thesis" Lecture

System Validation and Testing

Deliver second Contribution Paper

Technical Evaluation

"Writing CV" Lecture

Preparing for final theis

Final Thesis

Cermony

Tasks and Time Plan

\ Sp Nov \) \ M My \ "

i
Today

116 Aug - 15 Aug
1ddfiAug - 7 Aug

1yt Oct- 31 Oct
0dagd Sep- 14 Sep
iday Oct-7Oct
fidayd0 Oct- 17 Oct
Blayd0 Oct- 17 Qct
93 tays 8 Sep- 15 Jan
17May -7 Dec
5iday8 Dec - 14 Dec

{2days

146 days

18 Deg- 13 Feb
516ay$4 Feb- 20 Feb
405+ 15 Jan- 18 Mar
3 daslpr- 8 Apr
Tdlay3 Apr - 2 May
22days: 1 Apr - 30 Apr
O days 3 dan-10dun
5igays May- T May
10days May - 14 May
T2 days 1hpr-9ul
Tdayd0 Jun- 30 Jun

11023 Jun - 24 Jun

26

4.2 Budget and Resource Costs
Budget for a PC

4.3 Supportive Documents

ihabsafwat.18@gmail.com
petergeorge143@gmail.com
omarkhaledzidann@gmail.com
seifhassabelnaby@gmail.com
wassemcs@gmail.com
Saad.adel539@yahoo.com
Hend1410317@miuegypt.edu.eg
ayman@fcih.net
imoustafa@iskydev.com
mhanfy@iskydev.com
minamed7atag@gmail.com

Company Name (the place you work in)

11 responses

Centro global
eBenefits Network

Asset

freelancer

Silicon unions
Vodafone

Na
iskyDevelopment
isky Development

Valeo

27

Will you have the interest to sponsor our system ? (If yes, please Be sure
to provide your email.)

responses

® Yes
® No

5 References

References

[1] R. R. A. Dwivedi, A. Tirkey and S. Rath, Software Design Pattern Recog-
nition using Machine Learning Techniques , 2016,

[2] V. Basili, Goal Question Metric (GQM) model , 2006.
[3] D. et al, A review of design pattern mining techniques , 2009.

[4] J. Gamma, Helm and Vlissides, Design Patterns: FElements of Reusable
Object-Oriented Software , 1994.

[5] A. Hamdy and M. Elsayed, Automatic Recommendation of Software De-
sign Patterns: Text Retrieval Approach and Topic Modelling for Automatic
Selection of Software Design Patterns , 2018.

[6] W. B. A. Hatem Herchi, Design Patterns: Elements of Reusable Object-
Oriented Software , 2012.

[7] R. T. Meryem Elallaouia, Khalid Nafil, Automatic Transformation of User
Stories into UML Use Case Diagrams using NLP Techniques, 2018.

[8] Y.-G. G. Palma, Hadi Farzin, Recommendation System for Design Patterns
in Software Development (DPR) , 2012.

[9] D. R. P. S. Smith, Dynamically recommending design patternss , 2017.
[10] J. K. Shahid Hussain and A. A. Khan, Software design patterns classifica-

tion and selection using text categorization approach paper , 2017.

28

[11] B. S. Z. Meng, C. Zhang and W. Yin, GQM-based Approach for Software
Process Patterns Recommendation , 2017.

29

