Automatic recognition of the appropriate i Mot A
. Hashem Mohamed Ha

Software Design Patterns Veronia Emad Talaat

(Q/A tree like model approach) BupSryiscd By gﬁ;ﬁ:ﬁ% s:lzlr‘llm

PROBLEM

INTRODUCTION STATEMENT

RELATED
MOTIVATION G

Misr International Unive
At was ds

- Introduction

- Motivation

- Related Work

- Problem Statement
- System Overview

- Expected Results

- Demo 9)3!11

INTRODUCTION

Statistics 2
Statistics1 ==

Definition 1/2

Design Patterns [1] are reusable solutions to O

commonly occurring problems to help eliminate [[

redundant coding. O O
5)

They are not used directly in a machine code but
as ready-made templates.

°1] “Design Patterns and Refactoring.”, SourceMaking, 2019, https://sourcemaking.com/design_patterns.

Definition 2/2

The concept of design pattern was initiated in 1994 when
four software engineers published their book titled “Design
patterns: Elements of reusable object oriented software” [2].

They proposed a two dimensional matrix categorization to the patterns
based on two criterion which are purpose and scope.

- Purpose: Creational, Behavioral and Structural.
- Scope: Class inheritance and Object composition patterns.

2
° E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Pattern: Elements of Reusable Object-Oriented Software." Addison-Wesley, 1995.

The number of software engineers in
the world is growing every year:

’b"“‘\-.

£ ,'J* The top nation for
growth is China,
where the growth

-
’s ' rate is between 6%

to 8% leading up to

‘\ 2023

-
-

< 3
United States currently [N '
has the largest population

of software developers

India’s developer population = rd
will overtake the US by 2023

¥

ptttttitttetttttittfttt 2018: 23 million developers
pretreiteeeerteteereIeIEfIM 2023: 27.7 million developers

° DS.//NACKernoon.com/now-many-sottwdre-engineers-dre-tnere-iN-tne-woria-in- 019-us-europe-india-ru d-dlNd-

Statistics

Adapting and Changing user Requirements:
the #1 Challenge that faces the software engineers

Major Challenges

Software Development Survey

Integrating Different Adapting to Changing
Systems and Technologies Client Requirements

Understanding
User Requirements

Finding and Hiring
Right Developers

Continuous
Performance Management f3 GoodFirms

Labs://www.whatech.com/software/blog/archive/514579-around-54-software-developers-adapting-changing-client-requiremen hallenge

Academic
Motivation

- Previous researches haven't achieved the most efficient
accuracy.

- Selection of the suitable Design Pattern is considered as one
of the most critical and confusing phases.

- Very limited researches about this approach as most of the
researches concerns Reverse Engineering.

- According to our research, 2 researches only tested their
approach on the most common 23 design patterns.

Reverse

- Known as Backward Engineering Engineering

- Deconstruction of an existing product to reveal its design & architecture
- Have some risk factors:
- Loss of embedded business knowledge

- Difficulty to retrieve an efficient design and
requirements

- Most commonly associated with the theft of
S intellectual property

Market
Motivation

Have you faced a problem before while choosing the suitable software
design pattern for your system?

|1 responses

® Yes
® No

Have you faced a problem before while creating the correct class
diagram of your system?

11 responses

@ Yes
@ No

Have you ever discovered after writing your code that you used the
wrong software design patterns?

1 rm o rm /s e oo
|1 responses

@ Yes
@ No

10

From your point of view, which input format would help in getting the
most accurate results? (Ex: Q/A approach, Formal Documents...etc.)

@ QA
@ FormalDocum...
® QA+FormFilling

11

If there's a system that helps in selecting the suitable software design
patterns or creating the class diagram, Will you use this system ?

11 responses

@ Yes
® No

12

First
approach

Related Works

Second
approach

Third
approach

Fourth
Approach g

proposed
project

Towards more accurate automatic recommendation of
software design patterns [3]

Dataset:
- 14 patterns from the catalog of GoF design patterns
- 32 real design problem scenarios

Approach Details: ‘;!(’)11’)‘(;‘5’_:;“ l;,‘;ﬁ:'s“’“
. Tokenization and Normalization (Topics and Unigrams) =
- Stop Word Removal To };cs onlv = 36%
- Porter stemming algorithm Ullli)ﬁl‘ams glll\’ ‘60‘;@
g \ ,

- The natural language toolkit NLTK

- Gensim

- Vector Space Model (VSM)

- TF*IDF (Term Frequency Inverse Document Frequency)
- Improved Sqgrt-cosine similarity

13

d Hamdy, Abeer & Elsayed, M.. (2018). Towards more accurate automatic recommendation of software design patterns. Journal of Theoretical and Applied Information Technology. 96.
69-5079.

User Requirements To Class Diagram
Analysis [4]

Dataset:
- Eleven rules proposed by Chen [4]

Approach Details:
- Gate Framework
- Information extraction system called ANNIE

- Sentence splitter CM-Builder DC-Builder
- Part of speech (POS tagger) Recall 305 % 3%
- Syntactic parser Precision 38 % 939

14

o[d] Herchi, Hatem & Ben Abdessalem, Wahiba. (2012). From user requirements to UML class diagram.

Recommendation System for Design Patterns
in Software Development: An DPR [5]

Adapter Visitor Decorator
v v v -
Extending Flexble atemative Add additional responsibiliies
functionality to subclassing to an object dynamically
v QUESTION
Need 1o use Want to create Wart to define Want to add responsibilities Extension by
several existing a rg:;ue em& operation on 'polwm::es r::ops over to m':mn obj cz:?caly m;“m m?ﬂ s
T~ Ve T~V — o —y e | .
YeslNoIlDon‘tkma l YeslNoIIDm'Huw | | Yes / No / Don't know }—— > Weight L weTRC |
. Sub | OO DP NoQ TotWeight Pattern
D ata SEt' I | medium ‘beginner 11 >51 Adapter
; 2 beginner beginner 11 >51 Visitor
° 23 deS|gn patterns by GOF [2] 3 advanced medium 10 <50 Adapter
4 medium beginner I >51 hoth
5 advanced medium I <50 Adapter
6 advanced medium 11 <50 Visitor
7 medium low 11 <50 Visitor
8 advanced beginner 11 <50 Visitor
. . Summary
Techni ques. beginner Tow NoQZS <50 succeed
12.5% 12.5% 0% 2.5% 50
1 1 medi beginn NoQ>6 >51 failed
- Goal-Question-Metric (GQM) approach. WSk s0% . w00% Wse S0
advanced medium
504 37.5%

12

Galma, Francis & Farzin, Hadi & Guéhéneuc, Yann-Gaél & Moha, Naouel. (2012). Recommendation System for Design Patterns in Software Development: An DPR Overview. 2012 3rd
national Workshop on Recommendation Systems for Software Engineering, RSSE 2012 - Proceedings. 1-5. 10.1109/RSSE.2012.6233399.

Adapter Visitor Decorator _{I
/l\ -
Conver infertace Solve issue of Operations to perform Define new Extending Flexible altemative | | Add additional responsibilities
mumduo on the elements operation without functionality to subclassing to an object dynamically
LS5 P AN PN H uesron
S ‘ ___.....f----"‘ - B i QUESTION
Need to use Want to create ~0ant to Waltoavdd Want to define Want to add responsibilities Extension by
several existing || 2 reusable Wart o use opuamm ‘poliuting classes || newopsover | | toindividual oty dynamically || FOr responsibilites subclassing is
subclasses @xisling class with new ops the structure not affecting other That can be wilhdrawn impractical
Yes / No / Don't know Yes / No / Don't know Yes / No / Don't know Weight METRIC

16

A GQM-based Approach for Software Process
Patterns Recommendation [6]

Dataset:

- Process pattern library, each pattern is described in the form of

Name, Intent, Domain, Solution, Initial Context.
- 57 questions for 89 patterns

Design of Scenario
Questions and Answers

Techniques: fareceRbome s ams i Seobtes 1Tee11 B Sved 1454 SRS RIS a5 ReSSRS BeRS eue Bra R

- . = %—' Preprocessing — —:;3;; ;‘I:rl:ic
. Latent Dirichlet Allocation (LDA). &@" P g
 K-means. M meme [oyaauny - ([eene

o

Scenario
Questions

1

. Euclidean Distance. S R

. TF-IDF. oat = soswers |
- Goal-Question-Metric (GQM).

oMeng, Zhangyuan et al. "A GQM-based Approach for Software Process Patterns Recommendation.” SEKE (2017).

Questions & —-—-

Q&A of
Process
Patterns

Recommendation of
Software Process Pattern

H
——
H

Patterns based on

Searching for

Matching Points

Fig. 1: Our Approach to Software Process Pattern Recommendation

‘R*Answering Questions and
Scoring Weights According [* &
to Requirements PM of
I New Project
Answers & . _T__ _
Weights -

Candidate

List of Patterns :

17

Pattern 1 Pattern 2 } Goal

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 | = Question

Yos / No ! Don’t know Yes / No / Don’t know Yes / No / Don’t kKnow o Metric

Fio 2 GOOM Model for Pattern (OOnestion Desion

Functionality

Techniques

Dataset

Results

The system proposes an
} i The system has 83%
From User Requirements To 'Pl"r o hdp clmf Smtc:?m € P;'l:::f Eleven rules proposed by | Recall and 93%
UML Class Dia, 4 . . ; . EE Chen Precision
gram [4] textual requirements using | Syntactic parser.
NLP techniques and
domain ontology
. f . 1- Natural language Unifying and Extending T
Altmtu' T. fion of This System propose a processing (NLFP) User Story Models, in , Sysiem h“
User Stories imto UML Use | pnique of transform i Advanced Information obtained precisions
Case Diagrams using NLP que of rming | techniques orma between 87% and
Techni [6] user stories into use cases Systems Engineering by 98%
2-TreeTagger parser Wautele
This System provides a E. Gamma, R. Helm, R. This system detected
R lati process to recomunend Johnson, and J. Vlissides. | the appropriate DP
ion Pa m S for design patterns, depending | Goal-Question-Metric Design Patterns: with 50% of the
Design ““_"Al’:'ns"‘m‘“"s' on a simple (GQM) Elements of Reusable trails, It depended on
Vel ’ [5] Goal-Question-Metric Object-Oriented Software. | the knowledge of the
(GQM)approac user
Text processing :
Tokenization, Noise
Removal, Normalization ; .
Automatic Recommendation ,JLorter stemming ::P' ofGoI'cl::i’;n This apy to find the
of Software Design Patterns: | Describe the design algorithm tternsg and the right gec Pr—
Text Retrieval Approach [7] | problems in natural pa other ght design pa
. . . includes 32 real design with accuracy 65.5%.
Topic Modelling for language to choose the Indexing and Feature . .
problem scenarios collected | Then it was enhanced
Automatic Selection of appropriate design pattern | Selection by VSM fro . later in the
Software Design Patterns [8] Wl VATIONS sofrees- by 7%
Cosine Similarity (CS)
TF*IDF weighing
mechanism

[6] Elallaoui, Meryem et al. “Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques.” ANT/SEIT (2018).

(e}

amdy, Abeer and Mohamed Elsayed. “Automatic Recommendation of Software Design Patterns: Text Retrieval Approach.” JSW 13 (2018): 260-268.
amdy, Abeer and Mohamed Elsayed. “Topic modelling for automatic selection of software design patterns.” ICGDA (2018).

18

5 P ine Usi
JPreText
Porter’s stemumer
W
automate the suggestion of ﬁmg ts and Gang of Four (23 design This paper mention
Software design patterns appropriate design B e e, | Uy 8 S
classification and selection pattern(s) according to an | Binary, Term Frequency pattern n&(34 ” :’er;aslon - -
using text categorization assumed design problem in | (TF), Term Frequency d"'&‘ p:“ml ferms) Setmty "'q":h‘:'s us
approach paper [9] the design phase of Inverse Document design pattern collection | however ,
software development Frequency (TFIDF), Term (46 design patterns). pefczr;t:ég: wasn’t
P Collecti men
(TFC), Length Term
Collection (LTC), and
Entropy
IGFSS (Improved Global
Feature Selection Scheme
)
This Svetem dvaamicalle | TRE Abstract Syntax Tree
search for certain gesture (AST)
;’otgnm' " "“'r'db; wsinga | Brute force algorithm and | Problems to be solved
Dynamically recommending - 2 another algorithm which while code development
design patterns[10] S m"’""‘l"'“““" similar to BFS s
T — (breadth-first search) Anti Pattern detection
throughout code —
level ¢ K-Steps shrinking

e —
ussain, Shahid et al. “Sottware design patterns classIfication and selection using text categorization approacn.” Appl. SOt LOMPUL. 58 (LU /) 225-244. '] 9
Smith, Steven O and D. R. Plante. “Dynamically recommending design patterns.” SEKE (2012).

Our system detects the

suitable design pattern Using our own dataset To achieve higher
Automatic Recognition Of using question and . . based on Gang of Four (23 | accur
Suitable Design Pattern (Our ansfers approach Goal-Question-Metric design patt;i) asa -
System) (GQM) theoretical reference and

generates UML class using other online resources

AP1 (PlantUML)

20

GOM Tree

Goal 1 Goal 2
M1 M2 M3 M4

21

PlantUML

3.1 Relations between classes
Relations between classes are defined using the following symbols :

R I Composition
Agregation

" Extension <|-- | <
*—— &
o= | O—

3.2 Label on relations

It is possible a add a label on the relation, using ":7, followed by the text of the label.

It is possible to replace "==" by "..” to have a dotted line.

For cardinality, you can use double-quotes "" on each side of the relation.

@startuml

Class01 "1" #~- "many" Class02 : contains
Class03 o-- Class04 : agregation

Class056 --> "1" Class06

Q@enduml

°IantUML Language Reference Guide (1.2019.9)

PlantUML

3.4 Defining visibility

When you define methods or fields, you can use characters to define the visibility of the corresponding

3.3 Adding methods
To declare fields and methods, you can use the symbol ":” followed by the field’s or method’s name.

The system checks for parenthesis to choose between methods and fields.

@startuml
Object <|-- ArrayList

: equals()
ArrayList : Object[] elementData

ArraylList :

item:
- | o| = | private
| 0 | ¢ | protected
Tl ala Pacw:r:ivate
+ | O | ®| public
@startuml
class Dummy {
=fieldl
#field2
“method1 ()
+method2()
}
Q@enduml

°antUML Language Reference Guide (1.2019.9)

24

[) plant-test.pu

@

skinparam

skinparam 300

Alice -> Bob: Authentication Request

Bob --> Alice: Authentication Response

Alice -> Bob: Another authentication Request
Alice < Bob: another authentication Response
@

13

& nt-test.pu 13:1

] plant-test.pu Preview

® Zoom To Fit ® Use Temp Dir Output | svg +|

[var/folders/9d/fxlw6ts57zIbdxg7hjfrdAwm80000gn/T/plantuml-preview/plant-test.svg

Authentication Request

< Authentication Response
Another authentication Request
- >

< another authentication Response

Alice Bob
.
LF UTF-8 semanticolor

&

Problem Statement

Our proposed approach will help the software engineers to find the suitable
design pattern for a specific problem scenario and generate the class diagram
easily to avoid following problems:

- Solve the problem of Anti-Pattern:
- Big ball of mud
- God object
- Cargo cult programming

- Complicated code.

- The selection is confusing for novice engineers.

26

As there are similar design patterns with the same objective but
with different functionality

Abstract
Factory Builder Pattern
Pattern
- Create object « Create ObjECt
through through
inheritance composition
- Produce only - Produce families
one product of products

Composite Pattern

27

System Overview

Generating
Software Form Next Question

;Engineer (Q/A) 4 Pattern

EEQ L_ J) Output

Dictionary : List of Objects
Feature

— Weight |
‘extraction calculation

Tree Like Model

Filling The Form

I
v G
Class Plug-in . .
Diagram = (PIantUML)é Generating Formatted 78

° Output Applying API Description Puml File

- Provide an automatic selection of the suitable design
pattern according to the user's specific design
problem.

- Create a class diagram depending on the design
pattern chosen.

- More efficient Design Pattern selection than previous
researches as it won't depend on the engineer’s
knowledge level.

29

- Achieving higher accuracy than previous

researches which was 50%

- Provide a system that can do both processes, selecting the
suitable DP and creating the class diagram suitable for it.

- For the 1st time building a comprehensive dictionary that
differentiate between the different design patterns, using a

variety of books and researches.
30

© DefensiveBehavior

© AggressiveBehavior

A MoveCommand()

A

(©) Robot1

A MoveCommand()

O Behavior.|IBehavior

A Move()

A MoveCommand()

L
(©) Robo2

@ NormalBehavior

A MoveCommand()

—

L
(©) Rovots

O Behavior.|Behavior

A Move()

O Behavior.|Behavior |

A Move()

Strategy Demo Result

o

Context S << interface >>
strate gy Strateqy IStrategy
+some_method()-void +Behavioiinterface() void
FANTAAY
o

__________ | L d e b d ==k 4

] I I

1 1 1

ConcreteStrategyA CorncreteStrategyB ConcreteStrategyC

+Behaviorinterface() void +Behaviodnterface(} void +Behaviornterface() void

Strategy in book

(©) simpiepizzaFactory (©) cheesepizza

A CreatePizza()

O ArrayList<>Toppings

A GetName()
A Prepare()
A Bake()

A cut()

A Box()

Factory Demo Result

o

pizzas; it should be the only part This is the ‘m,dgtiog-
of our a??hc.a{:-on that vefers to the factory pzzd

tontrete Pizza elasses. [
We've defined Piz2d
- as an abstract ¢lass
— wi{'j\ som€ 'nc'lyl: ul
'|m?'.cmcr\£3{:!ons thi
tan be ovcr\riddcn.
The treate method 1s often

detlaved statically. / \

e l PepperoniPizza
VeggiePizza ClamPiz
roduts. Each
ht {hc le —
tase means
2] c]aﬁ”) ahd
hat's the case. 7‘

Factory in book

Appendix

-
.
N
>

A ™ v b Pl v o
uy U U A A y
N v A / 3 i 1) o ! y \ 7

Wy W \ 4 oy
4 v v v v w
;

Appendix 1/7

Background

Design Structure Function Context Challenge Skills Signature Scope
Patterns: “Send Feedback” “View
wirechart”
1)Adaptor Wrap a legacy object that To access a The requirement for To make the *To initialize Adapter references (or General
provides an incompatible foreign concrete type different type Adaptor contains) (Preferably,
interface with an object implementation of | implementation is already | substitutable Adaptee, representing it. | languages where late
that supports the desired native met, but by a non-native | within the native | *To implement | Adapter implements binding is obligatory)
interface functionality type interface The Native Interface. Adapter
Interface references (or contains)
Adaptee, representing it.
Adapter implements
Interface
2)Facade Wrap a complicated
) § subsystem with an object
that provides a simple
interface
3)Proxy Wrap an object with a

surrogate object that
provides additional
functionality

3

Appendix 2/7

4)Strate Define algorithm interface in | To reconfigure "Dynamic classification": | To encapsulate *To initialize Context references General
gy , : \ =
a base class and discrete The implementation of a the specific context global (In
implementations in derived functionality discrete object behavior behavior. To Strategy. Alternatively, dynamically-typed
classes (typically, less than a make it easily *To preform Context contains languages, instance
method) is determined replaceable partially Strategy (which contains | method override
during its creation and configurable-ac | data) may do)
may be reconfigured tion
later (e.g. formatting, in
a configurable
environment)
5)Factory Define "create Instance” To construct Creating an object by to create the *To obtain Factory Method (typically h
placeholder in the base class, | objects by fixed fixed criterion. Possibly object without concrete Singleton) creates lack the class
Method each derived class calls the type criterion reconfiguring it later specifying its product Products for Client. Each | object. (Elsewhere,
"new" operator and returns type Concrete Factory Method | where objects are
an instance of itself *To create is built to produce the created by default, a
product respective Concrete global reference to
Product. In the extreme | the respective class
case, Concrete Factory object will suffice)
Method is parameterized
over Concrete Product
6)Visitor Define "accept” method in To assign discrete | Some polymorphic To add the *To preform Visitor processes Subject | Languages that do

first inheritance hierarchy,
define "visit" methods in
second hierarchy ... a.k.a.
"double dispatch”

functionality by
object type

processing is
configurable and,
therefore, may not be
part of the processed
type family (e.g.
formatting, user
interface). Processing
depends as much on the
processor type as on the
processed type and must
be done by the
processor.

virtual function
hierarchy to a
class hierarchy
without opening
it

configurable
operation over
heterogeneous
collection

by requesting Subject to
"accept" it (the

Visitor). Concrete
Subject, requests Visitor
to "visit” it (the Concrete
Subject)

not support
multi-methods (most
commercial 00
languages).

The Visitor is really a
multi-method over
Concrete Visitor and
Concrete Subject
types).

Aspect oriented
programming attacks

the problem by from

another direction.

3/

Appendix 3/7

7)Builder The "reader” delegates to its
configured “builder”
each builder corresponds to a
different representation or
target
8)State The FiniteStateMachine To switch among Dynamic classification": *To encapsulate *To initialize FSM contains States, General
delegates to the "current” alternative Object that receives a state state machine references the current
state object, implementations small number of management State and interfaces for
and that state object can set | of an entire messages, but the entire *To respond to it
the "next" state object functionality set of methods it uses to *To virtuall
% event
respo!'ld to them depends replace an
upon its current state object's effective
virtual table
9)Bridge The wrapper models To separate choice | Two alternative To base the *To create Behavior contains
"abstraction” and the of implementation | classification schemes design on one configured Implementation. Client General
wrapper models many from interface seem equally valid (e.g. classification behavior uses Concrete Behavior
possible "implementations” stream opened for either | while retaining and typically provides
_the wrapper can use input or output and _also the I_atter. *To preform the Concrete_
inheritance to support encapsulates a specific Possibly, to allow concgrvewtwemawcwtion Implementation
abstraction specialization device). A replacement the latter to vary
for multiple inheritance, during object
possibly with dynamic lifetime
classification
10)0bserver The "model” broadcasts to To synchronize "Controlled data To keep the *To prepare for | Subject references General
many possible "views", state change redundancy”: The state dependent subject change | notifiers, each
and each "view" can dialog of one object must reflect | object referencing an observer

with the "model”

the current state of
another object (e.g.
document and its views,
server and its clients, the
result of a formula and its
values in a spreadsheet)

up-to-date at
minimum cost.
(The alternative
of polling the
data source by
its observers is
both expensive
and intrusive)

*To change
subject state

33

endix 4/7

11)composite Derived Composites contain | To traverse a A recursive object *To traverse the | *To process Both particular Leaves General
one or more bass Fecursive structure (e.g. file structure node heterogeneous | and default Composite
Components, structure directory tree) has to be by node, subtree are Concrete
each of which could be a uniformly traversed from the ignoring node Components. Composite
denved Composite outside (e.g. view type (possibly contains (or references)
traversing its document), | applying Components.
applying routine operations that The Particular
functionality (e.g. affect the Composite may choose
formatting for display) integrity of the to limit the scope of the
structure) inhented association
(see rectangular
“To copy or |nhenl:a|jce of
move nodes, association).
ignonng Node
type (counting
on automatic
validation)
12}De¢°rawr A Decorator contains a single | To enhance "Dynamic and multiple *To encapsulate | *To decorate Decorator is a concrete General
base Component, discrete classification”: The the difference in | concrete Subject and references (Preferably,
which could be a derived functionality implementation of some behavior without | subject (another) Subject, languages where late
Concrete Component or dynamically facet of behavior may be | modifying the interfacing for it. binding is obligatory)
another derived Decorator extended during its subject. To make | w1y yce Concrete Decorator
object’s lifetime the extended subject denves from Decorator
functionality
over the subject
substitutable
with the subject
*To practically
replace an object
base (setting it
to an existing
object)
*To replace
super call by
delegation
i Define “linked list”
IB}Cha"‘E Of . functionality in the base dass
Responsibilities | and implement "domain”
functionality in derived
classes
14)Interpreter | M2p2 domain to a language,

the language to a recursive
grammar, and the grammar
to the Composite pattern

34

Appendix 5/7

15)Command Encapsulate an object, To separate Initiator of action cannot | To encapsulate *To create Invoker contains Languages that do
the method to be invoked, request from (or need not) be there in | the execution execution Commands. Concrete not support bound
and the parameters to be execution time to launch the action | request with its request Command References methods / delegates.
passed behind the method (e.g. scheduling, arguments (and Receiver. Client General (when
signature "execute" selection from menu). possibly its undo | =t : references (or contains) | involving more data
: . To invoke i : :
Possibly, action may be arguments) execution both Receiver and or functionality than
undone later re Invoker, creates the just the receiver,
quest .
Command and registers | method and
it with Invoker invoke-time
arguments)
16)Iterator Encapsulate the traversal of
collection classes behind the
interface "first..next..is Done"
17)Mediator Decouple peer objects by
encapsulating their “"many to
many" linkages in an
intermediary object
l 13)Memento Encapsulate the state of an
existing object in a new
object to implement a
"restore" capability
19)Prototype Encapsulate use of the "new" | To create objects *Selecting objects by To copy each *To prepare prototype responds General
operator behind the method by example visual example. object without example set to clone message, (Preferably,
signature "clone" ... clients having to tell its returning base object languages that
will delegate to a Prototype type support

object when new instances
are required

*Creating objects by
content (rather than

type).

*Copying heterogeneous
collections.

deep-copying by
default)

35

Appendix 6/7

20)sSingleton Engineer a class to To encapsulate a *A software module (in *To guarantee *To assess Added static instance Languages that do
encapsulate a single instance | globally-available | languages that do not the existence of | singleton method, static singleton | not support
of itself, and “lock out” clients | resource support modularity) only one instance instance, private modularity
from creating their own singleton object constructor and possibly
instances *4 generally available destructor
part of the programming *To complete the
infrastructure whose construction of
existence is taken for the singleton
granted by the instance prior to
programmers who use it its first use
*A non-procedural flow of
control implicit in the
construction of
infrastructure
components prior to the
main program
21)Abstract Model "platform” (e.g. To construct *Creating objects by two | To encapsulate *To obtain Abstract factory General
windowing system, operating | objects by criteria: Basa type the decisions in concrete responds to creation
Factory system, database) with an criterion and (Known to the a single object product messages expliotly
inheritance hierarchy, and preconfigured application) and named after each
mode! each "product” (e.g. type environment *To create conceptual product
widgets, services, data (preconfigured). (E.g. product type. Each
structures) with its own creating GUI controls, concrete factory
hierarchy ... platform derived given control type and implements this
classes create and return knowing the GUI system interface for a concrete
instances of product derived being emulated) environment. The
classes products are arranged in
*An array of factory respgctive discrete type
methods with the same families where
implementation environment
criterion. (Same example implementations derive
as above, where the need from product
for each control type has
aroused on 5 separate
occasion)
22}T¢mplat¢ Define the “outline™ of an To outline and "inhentance of process™: To avoid *To execute a Processor features the General
algonthm in a base class ... guarantee the A type family shares a repetition of the generic template method
Method common implementation is execution of a sequential process with entire process in | process (which should not be
staged in the base class, gEeneric process one or more stages being | all virtual) as well as one or
peculiar implementation is type-specific implementations more “pnmitives” -
represented by "place virtual (possibly
holders™ in the base class and abstract) functions,
then implemented in derived typically private.
classes Concrete Processor
implements the
primitives
23)Flyweight When dozens of instances of | To prevent Objects are heavyweight | To prevent *To prevent Flyweight contains General
& class are desired and redundant or encapsulate resource redundant Smart Pointer Counters
performance bogas down, creation of global systam-critical resources | duplication, creation of by key, creates
externalize object state that resources and are read only system wide global Resources (which it
is peculiar for each instance, resources keeps via the Smart

and require the client to pass
that state when methods are
invoked

Pointer Counters) as well
as Smart Pointers (which
it does not keep) that
share a Smart Pointer
Counter. Smart Pointer
Counter contains a
Resource and notifies
the Flyweight. Client
uses Smart Resource
Pointers, obtained from
the Flyweight

36

Appendix //7 - Resources

- GoF book - Design Patterns Elements of Reusable Object-Oriented Software (1995)

- Towards more accurate automatic recommendation of software design patterns Paper by Abeer Hamdy , Mohamed El Sayed (2018)
- Automatic Recommendation of Software Design Patterns: Text Retrieval Approach by Abeer Hamdy , Mohamed El Sayed (2018)

- Difference between design patterns - Scribd

- Design Pattern Quick Guide - Tutorialspoint

- "Design Patterns.” Refactoring.Guru, https://refactoring.guru/design-patterns. (2019)

- “Design Patterns and Refactoring.”, SourceMaking, https://sourcemaking.com/design_patterns. (2019)

- From user requirements to UML class diagram Hatem Herchi, Wahiba Ben Abdess (2012)
- Recommendation System for Design Patterns in Software Development: An DPR Overview Francis Palma, Hadi Farzin, Yann-Ga (2012)
- “A GQM-based Approach for Software Process Patterns Recommendation.” Meng, Zhangyuan, SEKE (2017)
- A Design Pattern Dictionary Version 2 of 8-Mar-04 by Avner Ben (2004)
- Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques Meryem Elallaouia, Knhalid Nafilb (2018)
- Dynamically recommending design patterns S. Smith, D. R. Plante (2011)
- Software design patterns classification and selection using text categorization approach Shahid Hussain, Jacky Keung, Arif Ali Khan (2017)
- Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Technigues Meryem Elallaouia, Khalid Nafilb (2012)
- A Survey on Design Pattern Detection Approaches Mohammed Ghazi Al-Obeidallah, Miltos Petridis, Stelios Kapetanakis (2016)
- "Design Pattern Detection using Machine Learning Techniques," A. Chaturvedi, A. Tiwari and S. Agarwal, 7th.International Conference (2018)
« DESIGN PATTERN RECOGNITION Francesca Arcelli, Claudia Raibulet, Francesco Tisato (2004)
- Seftware design pattern mining using classification-based techniques by Ashish Kumar DWIVEDI , Anand TIRKEY, Santanu Kumar RATH (2018)
- Dwivedi, Ashish Kumar et al. “Software design pattern recognition using machine learning techniques.” IEEE Region 10 Conference (2016)
- Towards Machine Learning Based Design Pattern Recognition Sultan Alhusain and Simon Coupland, Maria Kavanagh, Robert John (2013)
- Design Pattern Support System: Help Making Decision in the Choice of Appropriate Pattern (2012)
é\ﬂethodological guideline to find suitable design patterns to implement adaptability Ime Pijnenborg (2016) 37

