Software Design Document for Automatic
Recognition of Suitable Design Pattern Project

Clara Kamal, Farida Mohamed, Hashem Mohamed, Veronia Emad
Supervised By: Dr. Taraggy Mohiy and Eng. Nada Ayman

March 9, 2020

1 Introduction

1.1 Purpose

The purpose of the software design document is to provide a full description of
the architecture and the system design of our system Automatic Recognition of
Suitable Design Pattern. It provides a full description about the system phases,
inputs, outputs and the core algorithms used. This document is intended to
developers and the designers of the project.

1.2 Scope

The system’s scope can be described as an automatic selection of the suit-
able design pattern depending on the user requirements using a Q/A approach
through a GQM-Based Tree Model. It is designed to support software engi-
neers who need help in selecting the design patterns due to lack of knowledge
or experience. It will help in saving time and cost of code refactoring in case
of wrong DP selections. Moreover, the system is considered as a control point
for managing the back-end composition by the system administrator. This doc-
ument presents the characteristics, objectives and constraints for each of the
users: software engineer and system administrator.

1.3 Overview

According to the standards for Software Design Documentation explained in
“IEEE Recommended Practice for Software Design Documentation”, the docu-
ment is divided into 9 core sections which are:

e Introduction:
Presents a brief description for the document

e System Overview:
Shows the whole representation of the system’s functionality and design

e System Architecture:
Describes the complete architectural design of the system using diagrams
for clarification to explain how the final design is to be achieved by con-
necting all these subsystems of the main system.

e Data Design:
Includes the data structures to be used, databases and data storage units
of the system.

e Component Design:
Describe the core approach of the system

e Human Interface Design:
Represents the UT of the system

e Requirements Matrix:
Traces user requirements

e APPENDICES

e References

1.4 Reference Material

Since DPs are documented solutions in the form of ready-made templates, of-
ficial documents and specialized books are used during the different phases of
the system creation. Questions are being extracted from the definitions and
keywords of each design pattern found in Design Patterns Elements of Reusable
Object-Oriented Software [4] and Dive Into Design Patterns [8]. To facilitate
the process of extracting the main information in each DP, a summarized format
was created for the 23 DPs as shown from Table 5 to Table 25. Moreover, the
scenarios used in testing was extracted from Dive Into Design Patterns [8] book.

1.5 Definitions and Acronyms

Table 1: Definitions and Acronyms

Term

Definition

Software Design Document (SDD)

Used as the primary medium for communicating software
design information.

Design Entity

An element of a design that is structurally and functionally
distinct from other elements.

Software Engineer (SWE)

The person responsible for the development
of a software based on the principles
of software engineering.

System Administrator

The person responsible for running the system.

3-layered approach that identifies goals,
questions and metrics in the form of a tree.

GQM Goals are identified at the top, questions needed
to reach these goals in the middle and at last the metrics
that are the answers of the questions.

GUI Graphical user interface.

Ul User Interface.

UML Unified Modeling Language.

PUML PlantUMLs.

MVC Model-View-Controller design pattern.

EAV Entity-Attribute-Value data model.

Q/A Question/Answer.

NLP Natural Language Processing

2 System Overview

The proposed system overview as shown in Figure 1, represents the system’s
users who are software engineers. The first step is the category selection. DP
Category Questions are retrieved from the database in order to fill the questions
model. The user will start answering the form of questions consequently and
inserting his objects and classes. Next, the answers will be transmitted to the
weight calculation phase to be evaluated with the aid of the GQM-based tree
model. The weight of each metric (answer) will be retrieved in order to calculate
the total weight for each category. Hence, the highest weight value from the
three categories will be the selected category. The next step is retrieving the
DPs questions for the selected category in the previous step. The user will start
answer the questions and the same process of selecting the appropriate category
will be repeated in order to select the suitable DP. The highest weight value
will be the selected DP. The last step will be the class diagram generation. It
will use the selected DP from the previous step and the objects and classes that

the user inserted at the beginning to generate the formatted PUML file to be
applied to PlantUML API which will generate the class diagram.

-~ =
o Evaluate
a B YES NO -y answers
: Database l
. - Categories’ ' * * e =
] i ievi Metri
Software | Questions Retrieving GQM-Based Tree Model a7 mi:::

Engineer

AN e

User I—}
Form of Categories’ Questions Woeight Calculation

Questions Answering

@] Evaluate '_._I Database i @
Y answers i YES NO Design Patterns’{DP)

" : * Questions Retrieving
CI:" z Retrieve E
@/ |/ Metrics GQOM-Based Tree Model | . '

Category

)]

@ l Weight
: Results — Form of DP Questions

| Questions Answering

Weight Calculation

Suitable Design Pattern
Output

§

Objects

Plug-In Class
PUML File (PlantUML) Diagram

Formatted PUML File Generation | APl Applying Qutput

Figure 1: System Overview

3 System Architecture

3.1 Architectural Design

View

CaseView DesignPatternView | QuestionView ||HomePageView ‘Category\fiew‘

ResultView DESignPattemDescriptionView‘ LoginView‘ Register\r‘iew‘ AdminView

v

Controller

UserController |SoftwareEngineerController| | CaseController

‘WeightCaIcuIationsCOntrolIer ‘ AdminController

v f

Model
‘ UserModel ‘ SoftwareEngineerModel ‘ CaseModel
‘ WeightCalculationsModel ‘ AdminModel ‘
DataBase

Figure 2: MVC Diagram

3.1.1 View

It is responsible for the presentation of data and representing the User Interface
(UI). We have two different interfaces one is responsible for Admin operations
and the other one is responsible for representing the core part including Cate-
gory, Design Pattern, Question, Weight Calculation, Answer, GQM and Class
Diagram. Also Category and Design Pattern both of them include "Name”
and "Description”. Moreover Login, Register and Result have view only in our
system.

3.1.2 Controller

It is responsible for binding the view and model. The interactions and requests
made within the view are taken and sent to the database to fetch data with
the use of models then it forward data to the view again to be shown. Some of
the controllers we are having; Admin Controller that is responsible for handling
interactions made within Admin Views, User Controller that is responsible for
handling interactions made by the Category, Design Pattern and Question. Also
classification Controllers are responsible for core functionality and handling its
interactions and finally the Notification Controller that is responsible for sending
notifications to the doctor when the results are shown.

3.2 Decomposition Description
3.2.1 Class Diagram

Class name: UserType

Type: Concrete.

List of super classes: N/A.

List of sub classes.

Purpose: Class that specifies user type .
Collaboration:This class gets ggregated by UserModel class
Attributes:Integer UserTypelD, String UserType.
Operations:None.

Class name: UserModel
Type: Concrete.
List of super classes: N/A.
List of sub classes: SoftwareEngModel, AdminModel.
Purpose: Class that retrieves and store the data from the database .
Collaboration: This class aggregates class UserController,UserType
Attributes: Id,FirstName,LastName password, Email.
Operations: Register(String FirstName, String LastName , String EmailAd-
dress,String Password),
login(String EmailAddress, String Password),
logout(), Updatelnfo(String FirstName, String LastName ,String EmailAd-
dress,String Password) ,
ViewHomePage(), ViewResult(Integer MaxScore), PrintResult().

Class name: UserController
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: a Class that encapsulates different types of user their common at-
tributes.
Attributes: None
Operations: Register(), login(), logout(), Updatelnfo() , ViewHomePage(), ViewRe-
sult(), PrintResult().

Class name: AdminModel
Type: Concrete.
List of super classes:UserModel.
Purpose: Class that retrieves and store the data from the database related to
the users with type admin .
Collaboration: This class aggregates class AdminController, Inherits class User-
Model
Attributes: None
Operations: AddAdmin(String FirstName, String LastName ,String EmailAd-

dress,String Password)

, ViewUser(Integer UserID),

DeleteUser(Integer UserID), ViewAllUsers(), ViewAllCategories()

, ViewAllDesignPatterns(), InsertCategory(String CategoryName, String De-
scription,String Question, Integer YesWeight, Integer NoWeight),
ViewCategory(Integer CategorylD), UpdateCategory(Integer CategorylD , String
CategoryName,

String Description,String Question, Integer YesWeight, Integer NoWeight), Delete-
Category(Integer CategorylD),

InsertDesignPattern(Int DesignPatternlD ,Integer CategoryID, String Design-
PatternName,

String Description,String Question, Integer YesWeight, Integer NoWeight) |
ViewDesignPattern(Integer DesignPatternID),

UpdateDesignPattern(Int DesignPatternlD ,Integer CategorylD, String Design-
PatternName, String Description,String Question, Integer YesWeight, Integer
NoWeight)

, DeleteDesignPattern(Integer DesignPatternID).

Class name: AdminController
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: To control all admin’s views
Collaboration: this class aggregated by AdminView,DesignPatternView,CategoriesView.
Attributes: None
Operations: AddAdmin(), ViewUser(), DeleteUser(), ViewAllUsers(), ViewAll-
Categories(), ViewAllDesignPatterns(), InsertCategory(), ViewCategory(), Up-
dateCategory(), DeleteCategory(), InsertDesignPattern() , ViewDesignPattern(),
UpdateDesignPattern() , DeleteDesignPattern().

Class name: WeightCalculationModel
Type: Concrete,
List of super classes: N/A.
List of sub classes: N/A..
Purpose: class that retrieves and store the data from the database related to
the weight calculations.
Collaboration: Aggregates WeightCalculationController, QA
Attributes: AnswerlD: Integer , QuestionID: Integer , Question: String, Ques-
tionWeight: Integer, QuestionNumber: Integer.
Operations: GenerateQuestions(QA: Question|[]), NextQuestion(Integer Ques-
tionlD,String Question), PreviousQuestion(Integer QuestionlD,String Question),
CalculateResult(QA: Question]]);

Class name: WeightCalculationController
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: class that deals with all the operations related to weight calculations.
Collaboration: Aggregates ResultView.
Attributes: QA: Question]|.
Operations: GenerateQuestions(), NextQuestion(), PreviousQuestion(), Calcu-
lateResult();

Class name: CaseModel
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: class that retrieves and store the data from the database
related to the Case need to be solved by the software engineer.
Collaboration: Aggregates CaseController.
Attributes: CaselD: Integer , Date: String, Description: String.
Operations: ViewCase(Integer CaselD,Integer UserID,String Date,String De-
scription)
, DeleteAllCases().

Class name: CaseController
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: To control case view.
Collaboration: Gets Aggregated by CaseModel and CaseView.
Attributes: None Operations: ViewCase() , DeleteAllCases().

Class name: CaseView
Type: Concrete,
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the case view .
Collaboration: Aggregates CaseController .
Attributes: None .
Operations: ViewCase() , DeleteAllCases().

Class name: QA
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: Includes all components needed to represent an object composed of
question ,answer and weight .
Collaboration: Aggregated by WeightCalculationModel .
Attributes: Integer AnswerID |, Integer QuestionID,
Integer WeightID, String Question.
Operations:None .

Class name: SoftwareEngModel
Type: Concrete.
List of super classes: UserModel.
List of sub classes: N/A..
Purpose: class that retrieves and store the data from the database
related to the software engineer.
Collaboration:Inherits UserModel , aggregates SoftwareEngController .
Attributes: None.
Operations: AnswerQuestions(IntegerQuestionID)
, ViewHistory()
, DeleteHistory(Integer HistorylD), Delete AllHistory(),.
ViewDpDescription();

Class name: SoftwareEngModelController
Type: Concrete,
List of super classes: N/A.
List of sub classes: N/A..
Purpose: To control software engineer views.
Collaboration:Assists CaseModel.
Attributes: None Operations: AnswerQuestions()
, ViewHistory()
, DeleteHistory(),Delete AllHistory()..
ViewDpDescription();

10

Class name: AdminView
Type: Concrete,
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the Admin view .
Collaboration: Aggregates AdminController .
Attributes: None .
Operations: AddUser(), ViewUser()
ViewAllUsers(), DeleteUser().

Class name: DesignPatternView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the Design Pattern view .
Collaboration: Aggregates AdminController .
Attributes: None .
Operations: InsertDesignPattern(), ViewDesignPattern(),
UpdateDesignPattern(), DeleteDesignPattern()
, ViewAllDesignPatterns() .

Class name: CategoryView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the category view.
Collaboration: Aggregates AdminController .
Attributes: None .
Operations: InsertCategory(), ViewCategory(),
UpdateCategory(), DeleteCategory()
, ViewAllCategories() .

Class name: DesignPattern
Type: Concrete,
List of super classes: N/A.
List of sub classes: N/A..
Purpose: creating design pattern and categories objects with their all possible
attributes.
Collaboration: Aggregates AdminController .
Attributes: Integer CategoryID, String CategoryName,
String CategoryDescription, 0
Integer DesignPatternlD, String DesignPatternName,
String DesignPatternDescription.
Operations: none.

11

Class name: RegisterView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the Register form view.
Collaboration: Aggregates SoftwareEngController .
Attributes: None .
Operations: Register() .

Class name: HomePageView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the Homepage view.
Collaboration: Aggregates UserController .
Attributes: None .
Operations: ViewProfile(), ViewDescriptions(),
ViewUpdateInfo(), QuestionsView()

Class name: DesignPatternDescriptionView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the DesignPattern and categories descriptionn view.
Collaboration: Aggregates UserController .
Attributes: None .
Operations: ViewDpDescriptions().

Class name: LoginView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the login view.
Collaboration: Aggregates UserController .
Attributes: None .
Operations: Loginview().

12

Class name: ResultView
Type: Concrete,
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the Result of the suitable category and design pattern
view.
Collaboration: Aggregates UserController .
Attributes: None .
Operations: ViewResult(),PrintResult().

Class name: QuestionView
Type: Concrete.
List of super classes: N/A.
List of sub classes: N/A..
Purpose: to represent the Question’s form view.
Collaboration: Aggregates UserController,QA and assists WeightCalculation-
Model .
Attributes: QA: Question|] .
Operations: AnswerQuestions(), GenerateQuestions(),
NextQuestion(), PreviousQuestion.

Class name: PrintResult.
Type: Interface.
List of super classes: None.
List of sub classes: None.
Purpose: To allow printing results with different printing strategies.
Collaboration: Class PrintResultPDFbyDate and PrintResultPDFbyName im-
plements this class.
Attributes: None.
Operations: PrintResult().

Class name: PrintResultPDFbyDate.
Type: concrete.
List of super classes: None,
List of sub classes: None.
Purpose: To allow printing results by date.
Collaboration: This class implements class PrintResult.
Attributes: None.
Operations:PrintResult ().

13

Class name: PrintResultPDFbyName.

Type: concrete.

List of super classes: None.
List of sub classes: None.
Purpose: To allow printing results by name.

Collaboration: This class implements class PrintResult.
Attributes: None.
Operations:PrintResult().

ey + gt Ingtanca(: Singleton;

i ipian’i HomePageView UsarType SoftwareEngHodel AdminMode!
= ViewDescriptions(}; ey [+ Vit Presil e[~Integer WserTypelD | [y nsweruestions(IntegerQuestionID| [+AddAdrmin String Firsthane, String Lasttiame String
u iptions(); | -Str _ i Strirg ;
TEST————— X i U |-Sting bserTyne | vty Pasiord]
— ! | Tt i . .
+ AnswerID: Ineger oA Lugintiew | ||, \; " 5 u M:F":fﬂnn‘lzl,l [+ Liser{ Integer UserID);
 QuestionID: Integer HInteger AnswerID; ~iewLogin{) b Questiansvien(: yllrteger Histor 0]; +DeleteUser{Integer UserlD);
+ Quegt?nn: St.ring +Integer Quastion]D: b VienLagout(): i E.ﬂe‘:”g:?rr_[]i . viewllusars{);
| Qustorhigt fcer +Hnager Weightl; | VewDpbescripbont VinlCotoguris{
+ Quastionumbar: Integer +5ting Question; __UssrController | +VienAllDesignfattems{];
+ MaxSoarel: Integer ' “PrintResult + I0: nteger nRTesnTemeLl
- MaxScoreName: Stri Printhesul + Firstharme: String % - IngertC ing CategoryNatme, Stin
ualil amle. g et N Description, $tring Question, Integer YesWeight,
+GenerateQuestions(4 LastName: Siring [[nteger Noitieight];
uestion(]}; “Laginl}s o|-- Pamrd: String) -)
NextQuestion{Integer Westoaien < o) - Em?llhddres.s: sn.mg . Regse + ViewCategorylInteger CateguryID);
QuestionlD:String Question); Lk Question]]; ~Logout]); +Register, String Firsthame, String + UpdateCategory(Integer CategaryID , String
P nuestt : T : Lasttiame String , String Description,String Questicn,
QuestionlD. QA Question[]); P — < UpdateInfof}; EmailAddress String Passward) Mnteger YesWeicht, Integer Noweight);
i h . - .
= ViewHomePage();| |+Regéster] String FirstName, String ,
+CaleulateResult{Qa Question[]); +GenarateQuastions|); r—— Lastfiame String + DeleteCategony{Ineger Categony 0]
[Tngug;.gstmn{}; " FRegister(); Emlllﬂ.ddnlns.sh'ufg Fasmrﬂ:ll: SeftwareEnglortralar é-alt::irrlﬁenﬂgnPat‘bem(InlMgnPatbernID,]nteger
' ;L?g:]ﬂ[]m EnvalpdeessSting | - e m“[],; Btring DesignPatternbame, String Description,String
-|mwﬂ]'l - AriswerQuestionst ; Kiuastion, Irteger YesWeight, Intoger Noleight J;
WeightCakulationCortraller Upatelnff Sving Frthame, |- Dletelistary(o)
+CategoriesSeora:armayList<Caragary Score> string LastNam String - ViawDipDeseription|]; + ViewDesigPattem(Integer BesignPatternID];
o ilnddressString Password |- Deletetistory():
by tGenEra R uestion) - ViewHomePage():) m'l + UpdateDesign Pattern[Int DesionPatternID Integer
CaseMoclel +NextQuestion(}; = ¥i It/ Tnteger :|C t ategerylD,
: X . + PrintResult); tring DesignPattername, String Description String
+ LaselD: Integer +BreviousQuestion; rintResut} bauastion, Irteger Yesheight, Ieger NeWeight J
4 Date: $tring +aleulateResutt]); ierfacen
+Description: String y ightI(): IrintResul + Dl {Integer DesignPatterniD];
+ ViewCase{Tnteger (st | DesignPattem
CaselD,String CaseName, ~HiewResul| - PrintResult); +Integer CategoryIl:
Integer UserID,String =PrintResull .
Diate, String Deseription]; #String ‘adminControll
+ DeletedliCasas]); T +5tring ¢ I preTe minController
L = ategoriesiew B . HAddUser()
L - F; F TnseriCategory(+Integer DesignPatternll; ienbser:
- ur” | + ViewCategory[): | 4String DesignF P +Deletelser]
CaseController CaseView ResultPDFlyDats PrintResultPDFbyName + DedeteCategory(}; Jstrin HiemallUsrs);
+ ViewCase{Integer CaselD, String | [+ ViewCaselli ([PrintResut(y) 4 prihesuh: + UpdateCagry); Dggign“mmmm,‘_: o ategories(:
KaseName, Integer UserID,String o l¥ DeletehllCase(); [HViemAlICategories!) +¥izwal|DesignPattemst J;
[t String Description]; t+ InsertCategory(];
I+ ViewCateqory(J;
+ DeletehliCases(]; b UpdateCategarylls
DesignPatternyiew _ Adminiew | [t DeleteCategeryl):
" T +hckilUser}: 4 InsertDesionPatiern(i
o HViewlser(]; + ViewDesignPattem(];
+ YiewDesignPattern(}; I g
" I ﬂ"lelwﬁlllléﬂ';f] H UpdateDesignPattern{);
attem(]; |+] .
- I ignPattern };
Singleton '+ DeeteDesignPatten]: f)
- instance: Singleton ¢ +\ieiAlIDesignPatiems();
P+ Singleton(]; +

Figure 3: Class Diagram

14

3.2.2 State Diagram

Unverified Answer Questions

[User | verfied [Wait for An | Rilei View
= - eacommender - y
.—» Log in 4—{ Action in o Question’s
\ J Homepage . Triggered \ Form)

Weight |AnswersTransmitted
Calculated & Processed

. -

/ . Y Answer Highest Weight
I_ g / Displayed Extracted
'\.71.”

Figure 4: State Diagram

3.2.3 Activity Diagram

Back

[Login

v

View HomePage]

|

i

Detect

View Design

History Pattern

(bP)
Answer
Questions

Pervious
Question|

Next
Question

Generate
Result

. k3

View Print
Result Result

View
Profile

| Log outJ

16

3.2.4 Block Diagram

Visual Paradigm Online Diagrams Express Ejdition

User Manipulation

DP Automatic
Recognition

Weight Calculation

Q/A Module Module

Class Diagram
Generation

Visugl Paradigm Online Diagrams Express Edition

Figure 6: Block Diagram

17

3.2.5 Process Diagram

Figure 7: Process Diagram

3.2.6 Sequence Diagram

fiusl Feradg Dnin 9 H:Homepage " O0uestons
A Vigw Vigw
Siie : —
|
AngwerQuestion: | ' r | i
Lot GenesateQueston ol GensrateQuestors| I:
| Ly
| Questins Amay Questions ids
|
oop] "
i Dipay Quesin A

[Cuestions_ids[ij=0]
AnswerQueston/Qiestion idsf] .
VigwhexQuestion{answerf)

» Nenﬂuesﬁontﬂuesﬂuns_idqﬂ,ansmm

Reﬁew\h‘eingD[Duesﬁcns_ids[l],anmrs[L

i
]
i Ansuer elghtD
|
| CalculateResul) N
i aSoureD
|

9, |

[Guestions_idsfij=Cuestions_ids[MaxScorzlD] | Questions_Array]l]
Display Question
AnstverQuestion{Question i) R
ViewNextQuestion{answer]) M
!)
! Nen[luesht:nmuesﬂnns_ldql],answer[l]}; Reﬁeve‘i'nleighﬂD[Questions_m[l],anmrs[L
| Answer WeightiD
i
|
! CaloulaeResul)
: MaxScorelD MaxScoreName
PR Display MarScorelame | e NSHNETE,

I
\ewa Paiz0n Gl Clagrams Espress Edin

Figure 8: Sequence Diagram

19

3.3 Design Rationale

As mentioned previously through Figure 2, the system’s architecture is based
on MVC. The system is structured into three logical components that interact
with each other.It helps in separating data presentation and user interaction
from the system data and functionality. Moreover, it provides flexibility for
future modifications and code reusability.

Regarding our current problem that needs to be solved, which is the suit-
able selection of design patterns for specific design problems, we found different
approaches to solve it.

¢ GQM approach:
3-layered approach that identifies goals, questions and metrics in the form
of a tree. Goals should be identified at the top then the questions that are
needed to reach these goals and at last the metrics that are the answers
of the questions. Weights are assigned to each of these answers and the
design pattern with the highest weight will be the selected design pattern.
This approach is represented in the form of Yes/No questions.

e NLP Approach:

Takes the user’s problem in the form of English description. It starts
processing the description by removing unnecessary words, highlight ad-
jectives and verbs, matching the results with the corresponding keywords
of each design pattern and finally recognize the suitable design pattern.
This approach can be represented in the of essay questions that specifies
the type of requirements needed to be entered. Another representation
can be by giving the user the flexibility to type his problem from his point
of view.

As a result of analyzing both approaches, we selected the GQM approach to
be our core approach. We found that GQM provides a good differentiation
approach using weights and it doesn’t depend on the sequence of answers but
the final weights. Moreover, by applying Q/A approach, it will help in extract-
ing more specific and effective requirements from the user through the specific
questions and answers provided to the user.

20

4 Data Design

4.1 Data Description

! MetricsId INT(11)
U Metrics VARCHAR(45)

¥ UserAnswersld INT{11)

& Metricsl D INT{11) H————— - @ oreated_date TIMEST AMP{20)
& UserlD INT{11) last_updated_date TIMESTAMP(20)
@ QuestionID INT(11) “is_ddeted TINYINT(1)

>

@ Case_fd INT(11) : ! QuestonID INT{11)

¥ created_date TIMESTAMP(20) I ¥ Queston VARCHAR (1000)
I
I

last_updsted_date TIMESTAMP(20) > — % Category_DesignPatterniD INT{11)
 created_date TIMESTAMP(20)
last_updated_date TIMESTAMP(20)
15 deleted TINVINT (1)

i dleid TINYINT(1)
e >

>

! Caseld INT

]

 Name VARGHAR(45) ! Weightld INT({11)
&
! Userld INT(11) ol - @ COPQuestionld INT(11)
 Frsthlame VARCHAR{100) @ Descripfian VARCHA.. W - @ MetricsTd INT(11)
 Result VARCHAR(! S ———_ __ _ _ _
 Lasthlame VARCHAR(100) AR{EE) ! COPID INT(13) created_date TIMESTAMP(20)
S eaiadd @ User_1d INT(11)
EmailAddress VARCHAR(100) o s Name VARCHAR(100) iy last_updsted_dste TIMESTAMP(20)
orea E .
> Passward VARCHAR(100) e ———— - @ BarentiD INT(13) s deleted TINYINT(1)

@ @
UserTypelD INT(11) lest_updated date T...
3 I Dis_deleted TINYINT (1)

“» created_date TIMEST AMP(20) 8 last updated date T ", o

¥ last_updated_dste TIMESTAMP(20) : is_deleted TINYINT(1)

& is_deleted TINYINT(1) >

|
 created_date TIMEST AMP{20) I >
1

weight_values
! Weightvauesld INT

! DescripfoniD INT{11)

¥ UserTypefD INT (11} “ Descripion VARCHAR(1000) @ wieghtld INT

¥ UserType TEXT ¥ Category_DesignPatiern_ID INT(11) Svdue INT

& created_date TIMEST AMP(20) > reated_date TIMEST AMP(20) oreated_date TIMEST AMP{20)

 last_updated_date TIMESTAMP(20) last_updated_date TIMESTAMS(20) ¥ last_updated_date TIMESTAMP(20)
“is_deleted TINYINT(1)

2 is_ddewd TINVINT(1) ls_deleted TINYINT(1)
de > » e >

Figure 9: System ERD

The "User” table contains the personal information of any user and the User-
Type attribute (Foreign Key) to differentiate between the users as the system
has two usertypes: Admin and Software Engineer, which can be increased in
the future that’s why we need the "Usertype” table which contains the types of
the users as each type has its own different privileges and permissions.

The ”categories_designpatterns” table contains the name of the category or
the design pattern and its parentID, as it relies on the Parent/Child Relationship
table design concepts which means that it’s hierarchical, because each category
is the parent of multiple design patterns. So this way we prevent duplicating
multiple tables with same attributes. Each Category/Design Pattern has a
description which is stored in the "descriptions” table.

21

The system is also based on the Entity Attribute Model concept which basi-
cally consists of entities table where the number of their attributes that describe
them are more likely to be expanded or increased in the future, but the number
of attributes are the options that vary with each different type of entity; then
the values table which stores the value that is linked to an attribute. So this
concept applies on our system in the case of the questions, their possible answers
and these answers’ weights (values).

The "questions_types” table include the Category_DesignPatternID passed
as a Foreign Key from the ”categories_designpatterns” table, which stores each
Category or Design Pattern’s corresponding questions.

The "metrics_options” table contains all the possible answers that the ques-
tions could have.

The "weights_types_options” table contains the question ID and the Metric
ID in which each question can have a couple of metrics (answers).

Each user has his/her answers saved in a table called "user_answers”, which
stores each questions and its corresponding answer that is answered before by
the user, in addition to the case ID which is a Foreign Key from the "case”
table.

The "case” table simply store the name of each case or scenario that the user
answered the questions based on it. It's used for later reference or as a history
for the user in case of facing a similar problem, he/she won’t need to answer all
the questions again.

At last, Each table has the three constant attributes of the log files which
are: created_date, last_updated_date and is_deleted to prevent any record from
permanent loss and erasing the historical data.

22

4.2 Data Dictionary
4.2.1 Security

e User’s sensitive information such as passwords should never be displayed
on screen. It should be encrypted using special characters.

e Each record in the database should be encrypted so if any data changed,
the changed row can be detected easily.

e The system must verify each email entered through the registration process
using an email matching function.

4.2.2 Reliability

Reliability is achieved by applying singleton design pattern that ensures that
only one instance the database class is created and that object is shared across
all the clients.

4.2.3 Maintainability

Maintainability of the system will be achieved by using MVC design pattern
that divides the system into three modules to separate the data handling in
each module. The system should provide a straight-forward friendly GUI that
allows the system administrator to add, update and delete any of the accessible
database information easily such as the questions in the tree structure behind
the design pattern selection process. Moreover, the system is able to serve
multiple user types by applying EAV in the user classes.

4.2.4 Extensibility

The system is easy to be extended and updated with the minimum effect by
applying EAV data model. The system administrator can add new questions
and update or delete any of the existing questions without affecting the tree
structure behind the design pattern selection process.

5 Component Design

5.1 System Approach

Our proposed system aims to provide an automatic selection of the suitable
design pattern through a GQM-based tree model. The proposed tree model
includes a sequence of questions that the software developer needs to answer.
These questions are designed upon the definitions of the three categories: Cre-
ational, Structural and Behavioral and the 23 design patterns [4]. Based on the
answers, the flow of the tree model will lead to the corresponding design pat-
tern. The developer’s requirements are extracted from the questions’ answers
and the weights of the answers leads to the suitable design pattern.

23

...... A VT S
YES No

Figure 10: GQM-Based Tree Model

A sample of the GQM based tree model is represented in Figure 10. It shows
the first level, last level and the dots which represent the intermediate levels. It
is a combination between GQM tree and decision tree. This tree consists of 12
levels of design patterns categories’ questions. Each question has two possible
answers which are ves and no and different yes and no weights. The weight is
calculated depending on the sum of answers’ weight of each question.

Unlike other approaches, this approach starts by classifying the category
of the DP using different sets of questions that define these categories. After
the system decides which category is the most relevant to the user’s problem
scenario, it will go through the design patterns’ questions of this category only.
This will reduce the probabilities of the potential suitable pattern. Moreover,
it will reduce the users’ confusion which is resulted from asking them many
questions about irrelevant patterns which will eventually keep them away from
the desired result and will take more time. Therefore, this approach help in
automating this process even more accurate and faster.

The weights of questions’ answers are shown in Table 2. The first four
questions concern "the Creational” category, Questions 5 to 7 concerns "the
Structural” category and from 8 to 12 affects "the Behavioral” category. Start-
ing from Question 13 to 24 concerns the Design Patterns of "the Creational”
Category. "The Abstract Factory” (AF) DP will be affected by the Question 13
and 14, while Question 16 and 17 concerns "the Factory Method” (FM) DP, in
addition to Question 15 that affects both of them. The three consecutive ques-
tions starting from Question 18 to Question 20 concerns "the Builder” (BD)
DP. Then Question 21, 22 affects "the Prototype” (P) DP; and the last two
questions concerns "the Singleton” (ST) DP category. The 'No’ answer always
weighs 50% of the "Yes’ answer weight.

24

Table 2: Question/Answer Weight Model

Question| Question Yes No Affected
ID Weight| Weight| Cate-
gory /
DP

Q1 Is this class more concerned about the way the objects are | 35 17 C
created?

Q2 Taking a "magze game” as an example, does this problem | 30 15 C
ignore details of what can be in a maze and whether a maze
game has a single or multiple players. Instead, it just focus
on how mazes get created in the first place?

Q3 Do you need to configure a system with objects that vary | 20 10 C
widely in structure and functionality?

Q4 Does creating an object using the new operator increase the | 15 8 C
complexity of yvour code?

Q5 Will this class be more concerned about how the object is | 40 20 S
composed of group of objects from different classes, to form
larger structures?

Q6 Would you like to combine the objects, interfaces or im- | 35 17 S
plementations of multiple classes together to obtain new
functionality?

Q7 Will this class have any relationships between it and any | 25 13 S
other classes in the same problem?

Q8 Will this classes be Concerned with interaction, responsi- | 30 15 B
bility and communication between objects?

Q9 Are the steps of a task are divided among different objects? | 25 12 B

Q10 Does your problems scenario needs a flow of processes? 20 10 B

Q11 Does the object behaviour should be represented dynami- | 15 8 B
cally?

Q12 Would your class control whether the objects to be depen- | 10 5 B

dent or independent?

Q13 Does this case deals with a group of related items? 45 23 AF

Q14 Is this case more concerned about creating the object itself | 30 15 AF
rather than its type?

Q15 types of this case’s objects could vary or increase in the | 25 12 AF &
future? FM

Q16 Does all case’s objects are based on a common base but dif- | 45 23 FM
fer in their internal components? (hint in pizza store pizza
is the commen base but have different internal components
as chicken or pepproni)

Q17 Would this case depend on reusing existing objects instead | 30 15 FM
of rebuilding them each time?

Q18 Will this case produce different types and representations | 45 23 BD
of objects using the same method of construction?

Q19 Does this case contains complex objects that have certain | 35 17 BD
configurations which makes constructing them step-by-step
necessary?

Q20 Does constructing the objects step-by-step doesn’t need all | 20 10 BD
of the steps to be called?

Q21 Do you need to carry over all of the field values of the old | 55 28 P
object into the new one?(Cloning)?

Q22 Would cloning existing objects that match in some config- | 45 22 P
uration reduce the number of subclasses?

Q23 Do many Classes in this case depend on one global variable | 60 30 ST
that can't be overwritten and would be repeated in each
one of them?

Q24 Does the case have some shared resources? (for example, a | 40 20 ST

database or a file.)

26

5.2 Weights Assigning

The algorithm shown below explains the steps of how the weights were eval-
uated based on the Recommendation System for Design Patterns in Software
Development Conference Paper [7].

1. Extract the questions from the definitions and the most common problems
that each category/DP solves.

2. Set two answers to each question which are "Yes’ or "No’ only.

3. Set the total weight of the "Yes' answers to 100 and the 'No’ answers to
50, regarding each category’s/DP’s questions.

4. Assign the "Yes’ weights of each question depending on the importance of
the problem that the question describes, and the 'No’ weights which will
be the half of its corresponding "Yes’ value. (Example: Yes = 40, No =
20)

5. Calculate the total sum of each category’s/DP’s weight.

5.3 Implementation Approach

Regarding the implementation approach, the pseudo code in Algorithm 1 re-
trieves firstly all the categories’ questions from the database, which is a central-
ized database in order to improve data preservation and avoid the risk of any
data loss. Then it stores them in an array called QuestionsArray. It also stores
both yes and no answers weight in two different arrays called QuestionYesWeight
and QuestionNoWeight. Then it displays all the questions stored in the array.
The user answers each question with either yes or no answers. Depending on
the user’'s answer the weight of this answer will be stored in its category score.
The highest category score will be the suitable category that the user should
use. After that the category name will be displayed for the user. The same
process is applied on the design pattern to select the final result of the suitable
design pattern.

27

Algorithm 1: Testing Approach

1 input: UserAnswer;

2 Questions Array[NumberO fQuestions]; CategoryScore Array[3];
//Array’s indices are Creational, Structural and Behavioral.

a for i = 0 to NumberOfQuestions do

4 query = "Select * from Questions where ID = i”;
5 Question = query.executeQuery;
QuestionsArray(i|=Question;

6 end

7 for i=0 to NumberOfQuestions do

8 Print QuestionsArrayli;

9 if UserAnswer is”Yes” then

10 if QuestionsArrayli].category = "Creational” then

11 | CategoryScoreArray[l] += Questions Arrayli].Y esWeight
12 end

13 //This if condition also applies for the 2 other categories.

14 end

15 if User Answer is”No” then

16 if QuestionsArrayli].category = "Creational” then

17 | CategoryScoreArray[l] += QuestionsArrayli].NoW eight
18 end

19 //This if condition also applies for the 2 other categories.
20 end
21 end

22 //find maximum score from the 3 categories’ scores.
max(CategoryScore Array[3]);

23 //Display the suitable category based on the highest category score.

Result: the suitable category name

5.4 Experiments and Results

The GQM base tree model was tested on 10 case studies to check if it could
recognize the suitable categories (Creational, Structural,Behavioral).

These case studies were retrieved from two books [4] [8]. Four out of the ten
case studies are illustrated below.

28

Case Study 1: The customer calls the customer service's number to speak
with a customer services agent. The customer service agent helps in providing
an interface to the billing department, the shipping department and the order
fulfillment department. In order to be able to finish all the steps required to
complete the customer’s order. Implementing this system should start with
creating an unified interface for the element or subsystem. Then there should
be a class that is called *wrapper’ class that is responsible to encapsulate the
subsystem. The wrapper class detects the complexity and associations of the
elements and assigns them to the appropriate methods.This case study was
solved by going through the GQM-based tree model shown in Figure 11.

o Q2 Q3 Q4
=0 5-0 B2 MO =17 5=0 B=o N0 =32 5=0B=0)~ "C =52 S=0 B=(
NO
Q7 a6
YES
c=60 5=75 B=g.) € YEo\C=60 5=40 B=g/* 'E

Qs

£=60 $=0 B={)
cHo (ahb] Q12
NO

C=60 S=100 B=88

[/

Figure 11: Case Study 1 Tree Optimum Path

The reasons behind each answer shown in Figure 11 is mentioned below:
1- No, The customer services class is more concerned about combining objects
not creating them.
2- No, This system doesn’t not ignore the details because in this case the cus-
tomer service class is mainly concerned about the details and the number of
departments the customer service has.
3- Yes , Because each department has it's own structure and functionalities.
4- No, This system is not really concerned about neither code complexity nor
creating objects.
5 Yes , This class is about how the object is composed of group of objects
from different classes such as the placing an order that many classes interfere in
starting from the warehouse till the shipping department.
6- Yes, as it will make this system easier to implement.
9- Yes, Almost all the tasks in this system are divided among different objects.
10- Yes, Because each order has a certain sequence that must be followed.

29

Case Study 2: The United States Constitution determines the factors by
which a president is elected, by limiting the term of office, and clarifies the order
of succession. There can be at most one president at any given time. Despite of
the personal identity of the current president. the title, "The President of the
United States” is a global point of access that describes the person in the office.
The main concern of this system is to create an object which is the president
of the united states regardless any other detail. This case study was solved by
going through the GQM-based tree model shown in Figure 12.

at Q2 Q3 Q4
c=05=08=0_}"YES > =s5 508 YESNO ~75 S=0 B=Q

YES

Q8
—a0sce2 g€ YES ar Qe
=90 S=62 B= =900 5=37 B=0. S NO-(_ 50500080 NO-Couso &, 5o

YES

o
. ‘U\

NO Qo Qa1 Q12
=90 5=62 B=4z) NO c=90 5=62 B=52_)"NO =90 5=62 B=6J

NO

C=90 5=62 B=63

Figure 12: Case Study 2 Tree Optimum Path

The reasons behind each answer shown in Figure 12 is mentioned below:
1- Yes, the United States Constitution class is more concerned about creating
only one instance of the President object.
2- Yes, this system doesn’t focus on any details as mentioned in the case’s sce-
nario: ” The main concern of this system is to create an object which is the
president of the united states regardless any other detail”.
3- No , having objects that vary extensively is not needed because we only need
the President object for one purpose and functionality.
4- Yes, the system doesn’t need to be provided with several President objects
so it creates complexity, as mentioned in the case study: "The President of the
United States is a global point of access”.
7- Yes, All the classes will have relationships between them.
8- Yes , because the United States Constitution class must communicate and
interact with many objects such as the president and the rest of the office em-
ployees.
9- No, they're not divided among different objects because it depends only on
the President.
10- No, it consists of one step only which is determining the factors of the elected
President.
11- No, the President has fixed responsibilities and functionalities.

Case Study 3: Designing an editor for creating documents that includes
text and graphics. There are some applications that should be done on text as
spelling, searching and replacing. There are different types of elements inside
the document. It can be character, line, page, and shapes. This system is
composed of one main class which is the document itself and other sub-classes
that combine together form this document. Which means that we can have a
class called Picture that has several components such as pixels and color and
size. Another class which is Shape that has another components such as length,
width, volume and color.These two classes combine together so the document
can include both pictures and shapes. The This case study was solved by going
through the GQM-based tree model shown in Figure 13.

Qi Q2 Qa3 Q4

G=0 =0 B=0 N 0_@'“0 YES C=52 S=0 B=0
Q ar Qs

s YES o) VES vEs

8
YES

;
;
;

"NO

Q9
=60 $=100 B=30

Qio Qi a2
YES G=60 S=100 B=5 NO NO =60 S=100 B=7

C=60 5=100 B=78

i

Figure 13: Case Study 3 Tree Optimum Path

The reasons behind each answer shown in Figure 13 is mentioned below:
1- No, the text editor class is more focused on the combination of the different
objects not on their creation.
2- No, because its main concern is the details included in the text editor not
the creation of the text editor itself.
3- Yes, because each document will contain the same objects but differ in struc-
ture.
5- Yes , because it depends on many objects from different classes together to
create the whole document.
6- Yes, because the text editor is mainly based on the combination of objects
and elements like the characters, lines, pages, and shapes. As mentioned also in
the scenario: ”This system is composed of one main class which is the document
itself and other sub-classes that combine together form this document”.
7- Yes, the system’s classes will have relationships between other classes like the
characters, pictures and shapes.
8- Yes , the document class will have to communicate and interact with all the
objects needed to be able to reach its large structure.
9- Yes, as the user needs to do several steps consecutively to reach the desired
document at the end.

Case Study 4: A pizza store wants to add more than one type of pizza
to its menu. Because all of the competitors have added a several of trendy
pizzas to their menus: The Ranch Pizza and the Veggie Pizza. Clearly, the
pizza store wants to compete with the competitors, so it added these pizzas to
its menu. On the other hand the pizza shop isn’t selling many Greek Pizzas
lately, so it decided to lift that off the menu. The system should be flexible
to add more pizza types in the future . In order to obtain this flexibility the
system should have one main class which is Pizza Factory. This includes the
whole process of making a pizza starting from the dough until it is ready to be
delivered. The other classes of this system are the types of pizzas that have
different components. Adding more type of pizza means adding one more class
only .This won't affect any other classes and won’t also affect the design of
the system. This case study was solved by going through the GQM-based tree
model shown in Figure 14.

1
YES
YES

Q9 Q1o a1 a2

c=00 soe2 B30 INOPC cog seo2 sz INOP goso s=62 857) NO> 90 562 =65
NO

©=90 5=62 B=63

The reasons behind each answer shown in Figure 14 is mentioned below:
1- No,the Pizza factory class (main class) is more concerned about combining
the ingredients of the pizza to form a new pizza.
2- No, this systems is concerned about the details of each pizza because they all
differ in shape, size , ingredients and taste not how the pizza itself is created.
3- Yes , because the formation of each pizza is different compared to another
pizza type.
4- No, this system is mainly concerned about the adaptability of combing the
classes and objects together rather than code complexity.
5- Yes, each class my have different components and objects but they all aim to
form a larger formation which is the pizza itself.
8- Yes, communication will help classes and objects talk together so they can
interact easily.
9- Yes, all the pizza tasks are divided among different objects, combining to-

=

Figure 14: Case Study 4 Tree Optimum Path

32

gether to form the pizza itself.

10- Yes, There are several steps that should be followed in sequence in order
to form the pizza as an example the Tomato Sauce should be added before the
Mozzarella Cheese.

Regarding the case studies that were tested on the Creational’s five Design
Patterns, five cases were tested, one case per DP. The questions recognized the
suitable Design Pattern successfully after answering the 14 Questions. These
case studies were retrieved from the same two books as the Categories™ [4] [8].
All of the cases are illustrated below.

Case Study 1: In travel site, we can book train ticket as well bus tickets
and flight ticket. In this case user can give his travel type as ‘bus’, ‘train’
or ‘flight’. Here we have an abstract class ‘AnyTravel’ with a static member
function ‘GetObject’ which depending on user’s travel type, will create and
return object of ‘BusTravel’ or * TrainTravel’. ‘BusTravel’ or * TrainTravel’
have common functions like passenger name. Origin, destinationparameters.
The reasons behind the Factory Method answer is mentioned below:

1- Does this case deals with a group of related items? yes.

2- Is this case more concerned about creating the object itself rather than its
type? no.

3- types of this case’s objects could vary or increase in the future? yes.

4-Does all case’s objects are based on a common base but differ in their internal
components? (hint in pizza store pizza is the commen base but have different
internal components as chicken or pepproni) yes.

5-Would this case depend on reusing existing objects instead of rebuilding them
each time? ves.

Case Study 2: We have considered a business case of fast-food restaurant
where a typical meal could be a burger and a cold drink. Burger could be either
a Veg Burger or Chicken Burger and will be packed by a wrapper. Cold drink
could be either a coke or pepsi and will be packed in a bottle. The reasons
behind the Builder answer is explained below:

1- Does this case deals with a group of related items? yes .

2- Is this case more concerned about creating the object itself rather than its
type? no .

3- types of this case’s objects could vary or increase in the future? yes.

6- Will this case produce different types and representations of objects using
the same method of construction? yes.

7- Does this case contains complex objects that have certain configurations
which makes constructing them step-by-step necessary ? yes.

8- Does constructing the objects step-by-step doesn’t need all of the steps to be
called? ves .

33

Case Study 3: Let’s think about the customer who has multiple Windows-
based (Desktop) applications currently in use for different financial purposes.
Now, they want us to provide a solution to add the printing feature in all the
applications they have. One thing which is clearly stated is that they want
printing functionality to be added to all their applications, which means, we
need to create a printing library or class that can be shared or accessed from
multiple applications. The reasons behind the Singleton answer is discussed
below:

6- Will this case produce different types and representations of objects using
the same method of construction? no.

8- Does constructing the objects step-by-step doesn’t need all of the steps to be
called? no .

11- Do many Classes in this case depend on one global variable that can’t be
overwritten and would be repeated in each one of them? ves.

12- Does the case have some shared resources? (for example, a database or a
file.) yes.

Case Study 4: imagine we have two authors, Edgar Allan Poe and Charles
Darwin, both looking to publish their (arguably) most famous works, The Raven
and On the Origin of Species, respectively. Since one is a poet and the other
a scientist, the types of work they've created are quite different (poem and re-
search paper). Moreover, given those disparate types of writings, it's unlikely
that they’ll both be using the same publisher. As it happens, The Raven was
first published in 1845 by a periodical called The American Review, while On
the Origin of Species was published in 1859 by John Murray, an eclectic English
publishing firm. The reasons behind the Abstract Factory answer is mentioned
below:

1- Does this case deals with a group of related items? yes.

2- Is this case more concerned about creating the object itself rather than its
type? yes.

3- types of this case’s objects could vary or increase in the future? yes.

4-Does all case’s objects are based on a common base but differ in their internal
components? (hint in pizza store pizza is the common base but have different
internal components as chicken or pepperoni) no.

5-Would this case depend on reusing existing objects instead of rebuilding them
each time? no.

7- Does this case contains complex objects that have certain configurations
which makes constructing them step-by-step necessary 7 no .

34

Case Study 5: Consider the case of Photoshop. A graphics designer add
an image to the canvas. Then, he adds a border to it. Then, he gives it a bevel
effect. Finally, he sets its transparency to 50%. Now, he wants to apply the
same design to another 20 images. The reasons behind the Prototype answer is
explained below:
4-Does all case’s objects are based on a common base but differ in their internal
components? (hint in pizza store pizza is the commen base but have different
internal components as chicken or pepproni) yes.

6- Will this case produce diffrent types and representations of objects using the
same method of construction? no.

7- Does this case contains complex objects that have certain configurations
which makes constructing them step-by-step necessary 7 yes.

8- Does constructing the objects step-by-step doesn’t need all of the steps to be
called? yes.

9- Do you need to carry over all of the field values of the old object into the
new one?(Cloning)? ves.

10- Would cloning existing objects that match in some configuration reduce the
number of subclasses? yes.

5.5 Statistics

To evaluate the efficiency of the first phase in our approach, we gathered all the
experiments’ results into Table 3 which represents the three results that were
obtained from the ten experiments applied on the system. The true positive
percentage denotes the number of times the system had selected the suitable DP
category. The false positive percentage indicates the number of times the system
had selected the selection of a wrong DP category that doesn’t suit the given
problem scenario. In the structural category’s false positive percentage, the
system detected two possible categories which were structural and behavioral,
which means it wasn’t able to select the suitable DP category for this problem
scenario. The results that were obtained by the ten case studies that were tested
by our system were 80% precision, 100% recall and 80% accuracy.

Table 3: Proposed Approach Categories Results

Category True Positive | False Positive
Percentage Percentage

Creational | T5% 25%

Category

Structural | 66% 34%

Category

Behavioral | 100% 0%

Category

35

A comparison with the similar systems is shown in Table 4. Outperforming
of the proposed approach is due to starts with the DP categories’ questions, and
thus it is more effective and can be applied in more scenarios.

Table 4: Comparison with Similar Systems

Approach | Precision | Specialization

NLP [6] 93% Class diagrams generation to case
studies from Information Systems and
Object-Oriented Analysis books.

NLP [3] 87% Use Cases generation from Web
Company online dataset.
GQM [7] | 50% 3 DPs recognition on cases from
Gof book [4].
LRNN [2] | 99.6% 2 DPs recognition on collected dataset.
NLP [5] 65.5% 14 DPs recognition on collected dataset.
NLP [1] 72% 23 DPs recognition on collected dataset.
Ours 80% 3 DP Category recognition on cases

from Gof book [4].

6 Human Interface Design

6.1 Overview of User Interface

Our system is a desktop application with a simple responsive UI. Two types of
users can be able to log in to the system: the software engineers and system ad-
ministrators. The SWE'’s purpose is to get the suitable DP for his requirements
and the system administrator main purpose is to manage the system’s data and
structure. Different screens are provided to each user type.

6.2 Screen Images

&P FXML Register.fxm -

Automatic Recognition of
Suitable Design Pattern
Registration

First Name:

Last Name:

E-mail:

Password:

click here to login Cancel Register

Figure 15: Register Form

@ AddAdmin fm
<
Add Admin
First Name:
Last Name:
Date Of Birth:[.. =
E-mail:
Mobile Phone:

Add

Figure 16: Add Admin

37

) FXML Login.fxml] X

Automatic Recognition of Suitable
Design Pattern

Login

Password:

: Login
click here to create a new account

Figure 17: Log In Form

@9 FXML Home.fxml o e

Automatic Recognition of Suitable
Design Pattern

Design Pattern Category Detector

Design Patterns

Profile

History

Logout

Figure 18: Homepage

%) FXML Form fml o X

Q1. Is this class more concerned about the way the
objects are created?

PREWOUS
Figure 19: Form(1)
() FXML Form fiml a X

Q7. Will this class have any relationships between it and
any other classes?

PREVIOUS

Figure 20: Form(2)

39

!@! ViewProfile.fxml
<

Profile

First Name; Hashem
Last Name: Mohamed
Date Of Birth:; 3/471998

E-ma": hashemmohamed@gmail.com
Mobile Phone: 1236780

Figure 21: Profile

Profile

First Name:

Hashem

Last Name:

Mohamed

E-mail:

hashemmohamed@gmail.com

Password:

Figure 22: Edit Profile

40

@ ViewAllDPs.fxml

&
Design Patterns
O T
1 Adapter Structural
2 Strategy Behavioral
3 Singleton Creational View
4 Observer Behavioral View
Figure 23: All Design Patterns
@i E
rs

Adapter Design Pattern

[D:
Category Structural Pattem

Name: Adapter
Descri Ption: To access a foreignimplementation of local

functionality.

Figure 24: Design Pattern

41

) ViewHistory.fxml

-
History
Case Name "Bank Account":

Date: =

Result: Adapter Design Pattern

QU St ON A o e oo o aitoom ossos. |
to form larger structures 7

Answer 1: @ ves O no

Q uestio n 2: Does creating an object using the new operator
incraase the complexity of your coda?

Answer 2: O ves @ no

QuUEeSTION 3 pouayou e o combine tre sbiects otertaces or |
to oblain new functionality?

Answer 3: @ ves O Mo

Qu eSti on 4: Ara the steps of a task are divided among differant objacts?

Figure 25: History
@ AddDPAdmin, F
-~

Add New Design Pattern

ID:

Category: | category =
Name:

Description:

Questions:

Mo content in takle

Figure 26: Add New Design Pattern

42

@ EnabledForm fxml

4] Question Yes Weight No Weight

Mo content in table

Add New Question
Cancel

Figure 27: Add Questions to Design Patterns

& ViewUser sHistory.fxml

-*

User's History

Bank Account:
ID: 1
User'sID: 0
Date: [=:=

Result: Adapter Design Pattern

Date =

composed of group of objects from different clazses,
to form larger structures 7

Q uestion 1 o willthis class be more concernad about how the objectis I

Answer 1: @ ves O no
Q ueStion 2: Does creating an object using the new operator
increasa the complexity of your code?
Answer 2: O ves @ no
Quest | on 3: Would you like to cfarnbine tha objects,interfaces or I
I tons of mul h

le classes
to obtain new functionality?

Figure 28: User’s History

43

6.3 Screen Objects and Actions

There are two types of users in the system, software engineers and system ad-
ministrators. Software engineers can register to the system using the registration
form as in Fig.15. However, administrators can not register their accounts in
the system but current administrators can add them using the form in Fig.16.

As shown in Fig.17, the users have the ability to log in to his account and
access all the main functions of the system. These main functions depends on
the user type. Fig.18, represents the homepage of the software engineer.

The first option in this homepage is the design pattern recommendation which
generates the questions form for the user as shown in Fig.19 and 20.

The second option is displaying all design patterns available in the system as
displayed in Fig 23. By clicking "View” button, each pattern can be viewed in
details as in Fig.24.

Fig.21 represents the third option which is viewing the personal information of
the SWE and have the ability to edit any of his/her information as in Fig.22.
The last option available to the user is the history display which shows all the
previous detection processes that the SWE did. He/She can view a specific
history record and it will be displayed as in Fig.25.

If the logged in used is an administrator, he will have the ability to view all
design patterns, edit, delete or add new design patterns. The form in which a
new design pattern can be added is represented in Fig.26. The "Next” button
transfers the user to Fig.27 in order to insert the questions and the answers’
weights for each. Moreover, the administrator can view all user’s history as in
Fig.28.

7 Requirements Matrix

44

Al
314

{

Congéed

arg I D
Class Diagram, Activity Diagram

Required [Logln Software Enginesr
312 Required |Log Out Software Engineer | In Progress (Class Diagram, Activity Diagram
313 Required rRegister Software Engineer | Complefed Class Diagram
314 Required Update Profile Software Engineer | Completed (Class Diagram _
315 Required ~ [View Profile Software Engineer | Completed Class Diagram, Activity Diagram
7 Required VView Homepage Software Engineer | Completed Class Diagram, Activify Diagram
319 Required View DP Description Software Engineer | In Progress Class Diagram
3110 Required ~ |View Al DPs Software Engineer | In Progress Class Diagram
311 Opfional Print Resut Software Engineer | Complefed Class Diagram, Activify Diagram
3112 Required |View All History Records Software Engineer | In Progress Class Diagram, Activity Diagram
3413 Required |View History Record Software Engineer | In Progress Class Diagram
3114 New Requirement |Delete History Record Software Engineer | In Progress Class Diagram
3115 New Requirement |Delete ANl History Records Software Engineer | In Progress Class Diagram
3118 Required View Recommendation Result Software Engineer | Complefed | Class Diagram, Activity Diagram, Sequence Diagram
3447 Required [Answer Questions Software Engineer | Complefed Class Diagram, Activity Diagram
321 Required Update Profile System Administrator | In Progress Class Diagram
322 Required |Add Admin System Administrator | In Progress Class Diagram
323 Required Update Users' Profile System Administrator | In Progress Class Diagram
324 Required |View Users' stem Administralor | In Progress (Class Diagram
325 Required View All Users System Administrator | In Progress Class Diagram
326 Required |TJeleie User System Administrator | In Progress Class Diagram
327 Required |Insert Category System Administrator | In Progress Class Diagram
328 Required |Update Category System Administralor | In Progress Class Diagram
329 Required | View Al Categories System Administrator | In Progress (Class Diagram
3210 Required [View Calegory System Administralor | In Progress Class Diagram
32N Required | Delete Category System Administrator | In Progress (Class Diagram
3212 Required |Insert Design Patiem System Administralor | In Progress Class Diagram
3213 Required |Update Design Pattern System Administrator | In Progress Class Diagram
3214 Required View Design Pattem System Administraor | In Progress Class Diagram
3215 Required |View all Design Pattems System Administrator | In Progress Class Diagram
3216 Required |Delele Desgin Paftern System Administrator | In Progress Class Diagram
3217 Required |View All Users' History Records System Administrator | In Progress Class Diagram
3218 Required |View User's History Record System Administrator | In Progress Class Diagram
3219 New Requirement ID\‘:Iele Users' History Record System Administrator | In Progress (Class Diagram
3220 New Requirement |Delete All History Records System Administrator | In Progress Class Diagram
331 Required [Retrieve Metrics Weights Weight Calculation | In Progress Class Diagram
332 Required [Compute Final Metric Weight Veight Calculation | In Progress (lass Diagram, Process Diagram
341 Required [Encryption/Decrypfion Security In Progress (lass Diagram
342 Required ___|Emails Maching Security In Progress (Class Diagram

Figure 29: Requirements Matrix

45

8 APPENDICES

Table 5: Singleton Design Pattern

Function To enclose a global resource.
Intent Make sure the only one instance is created
for a class with a global access point to it.
Objective Prevent creating multiple instances
for a specific class.
Disadvantage | * Singleton client code is difficult to be unit tested,

Needs a specialized treatment in the case of multi-
threading to prevent the creation of many singleton
objects.

* May cover bad code designs,

Breaks the rule of "Single Responsibility” principle.

When to use

Creating a single instance that can be accessed by
all clients,
Providing a harsh control on global variables.

Table 6: Prototype Design Pattern

Function

To establish objects by sample.

Intent

* Specify the kinds of objects to create using

a prototypical instance,

and create new objects by copying this prototype.
* Co-opt one class instance for all future instances
to be use d as a breeder.

* The new operator considered harmful.

Objective

To create a clone (Copy) of an object without getting
your code coupled with the class of that object.

Disadvantage

It could be very tricky to clone complex objects
with circular references.

When to use

* When a system should be independent of how
its products are formed, composed, and performed.
* When defining the classes to be built

at run-time, such as: by dynamic loading.

* To avoid building a class hierarchy of factories
that equivalents the class hierarchy of products.

* When a class instances can have one

of only some various case combinations.

Installing and cloning a corresponding number

of prototypes may be more suitable than manually
installing the class, with the proper state.

46

Table 7: Abstract Factory “Kit” Design Pattern

Function

To build objects by standard and preconfigured type.

Intent

* Provide an interface for building families of
linked or dependent objects without assigning
their specifying classes.

* A hierarchy encapsulating: many possible
"platforms™ and a suite of "products” being built.
* The new operator considered harmful.

Objective

To prevent using lots of if case statements in your
portable application so it can support many
platforms including: database, operating system,
windowing system, etc.

Disadvantage

The code may become more complex than it should
be, as many new interfaces and classes are added
together with the pattern.

When to use

* A system should be independent of how its
products are established, consisted of, and appeared.
* One of several families of products must be
configured with a system.

* A family of related product objects is planned to
be used together, and this constraint wants to forced.
* A class library of products needs to provide,

and wants to detect only their interfaces,

not their implementations.

Table 8: Builder Design Pattern

Function

To split the construction of a complex object from
its representation, in order to create different
representation in the same construction process.

Intent

Analyze a complex representation,
establish one of several targets.

Objective

* To provide a different way to construct
complicated objects.

*To construct an different fixed objects
using the exact object building process.

Disadvantage

The code’s overall complexity increases
as the pattern needs multiple new classes
to be developed.

When to use

* The algorithm for establishing a complex object
should be independent of the parts that make up
the object and how they’re assembled.

*The structuration process must allow different
representations for the object that’s built.

47

Table 9: Composite Design Pattern

Function

Pass over a recursive tree-structure uniformly.

Intent

Construct tree structures of objects to allow clients
deal with the structures like individual objects.

Objective

Prevent differentiating between the primitive
(simple) objects and composite (complex) objects,
which are collections of primitive objects,

even when they act the same most of the time,

to reduce application complexity.

Disadvantage

When the functionality of classes has many
differences, it becomes difficult to create a common
interface.

When to use

*When the application has hierarchical
tree-structure.

*When the application wants to set

a fixed functionality through the whole structure,
deal with composites (complex) and individual
(simple) objects uniformly.

Table 10: Bridge “Handle/Body” Design Pattern

Function

Split the hierarchies of abstraction (user interface)
and implementation.

Intent

Split the abstraction from its implementation
so they can change independently.

Objective

Prevent the hierarchy from growing exponentially
that happens by initiating a concrete class after each
action made by the client that leads to difficulty

in editing, extending, and reusing abstractions

and implementations independently This can be
done by switching from inheritance to composition.

Disadvantage

Code Complexity.

When to use

*Cover the implementation of

an abstraction from clients.

*Share an implementation among multiple objects
and hide this from the client.

*Abstractions and their implementations should be
extensible by sub classing.

*Implementations switching during runtime
without affecting the client.

48

Table 11: Proxy “Surrogate” Design Pattern

Function Build a wrapper to hide the object’s complication
from the client.
Intent Create a new object to act as a substitute for
the original object to control its access,
by sending the request from the new object to
the original object.
Objective Prevent the creation of high weight objects
until a request is received.
Disadvantage | *Complicated codes.

*Delayed service response.

When to use

*When there is a need for a practical reference to an
object.

*Common cases:

-Remote proxy (Ambassador): a local model for

an object is initiated in another address space.
-Virtual proxy (lazy loading): construet objects with
heavy weight by request.

-Protection proxy (Access control): add a security
layer by managing different access rights of objects.
-Smart reference: replacing empty pointers

that performs additional actions when an object

is accessed, discard heavy weight objects

when they are not in use.

Table 12: Flyweight Design Pattern

Function Avoid excessive creation of global resources.
Intent *Substitute heavy-weight widgets with
light-weight gadgets.
*Fit several objects into the available memory
finegrained by sharing common states efficiently.
Objective Reduce the design cost in terms of memory
consumption and run-time overhead (performance).
Disadvantage | *Code Complexity.

*More CPU cycles due to the recalculation of data
whenever it’s requested.

When to use

*When the objects have common state
(intrinsic state) that can be extracted
and shared among different objects.
*When large number of objects is used.
*When the cost of storage is high.
*When the application does not rely

on object identity.

49

Table 13: Decorator Design Pattern

Function Adding extra behaviors to an object.
Intent Dynamically assign extra responsibilities to
an object.
Substitute subclassing to expand functionalities.
Objective Make an alternative for static inheritance in order to
add behaviors to specific objects through runtime.
Disadvantage | Difficult to ignore stack order while implementing,

Difficult to remove a specific wrapper from stack.

When to use

Adding to objects extra behaviors through runtime,
When it’s hard to expand object’s behaviors through
inheritance.

Table 14: Facade Design Pattern

Function

To hide the system’s complexities and
provide the client with an interface from
where the client can access the system.

Intent

Provide a unified interface

to a set of interfaces in a subsystem.
Facade defines a higher-level interface
that makes the subsystem easier to use.

Objective

To implement a simplified interface to the universal
functionality of a complicated subsystem.

Disadvantage

Can be a god object coupled to all classes of an app.

When to use

* This pattern is suitable if we have a complex
system that we want to expose to clients in

a simplified way.

The aim is to mask internal complexity from

the outside behind a single interface.

* It also decouples the code that uses the system
from the details of the subsystems, making it easier
for the system to be modified later.

50

Table 15: Adapter Design Pattern

Function

To access a foreign implementation of
local functionality.

Intent

*Convert a class interface to another expected
client interface.

*Adapter allows classes to work together because of
incompatible interfaces that could no otherwise.

Objective

To reuse any component without being worried
about compatibility between it and the system
vou are currently developing.

Disadvantage

The code’s overall complexity increases because a set
of new interfaces and classes needs to be introduced.
Sometimes just changing the service class to match
the rest of your code is simpler.

When to use

When a class you want to use does not fulfill
the interface requirements.

Table 16: Tterator "Cursor” Design Pattern

Function

Traverse the container (collection) and
access its elements consecutively.

Intent

Abstract the traversal of hugely different
data structures in order to define algorithms
that can communicate transparently with each other.

Objective

* Support a collection traversal to

"full object status.”

* Standard library abstraction of C++ and

Java allowing the decoupling of collection classes and
algorithms.

* Access the aggregate object’s elements
consecutively without revealing its underlying
representation.

Disadvantage

* If your application only operates with simple
collections, implementing this pattern can be
an overkill.

* It may be less effective than the direct use of
elements of certain specialized collections.

When to use

* When accessing the contents of an aggregate object
without displaying its internal representation.

* Supports multiple aggregate object traversals.

* Providing a standard framework for traversing
various aggregate structures

(supporting polymorphic iteration).

51

Table 17: Chain of Responsibility Design Pattern

Function

Enable potential handlers to transfer requests
through the chain until one of them handles requests.
Allow multiple entities to handle requests in

the concrete classes of the receivers without coupling
sender class.

Intent

* Do not couple the recipient of the request to the
receiver by allowing more than one object

the opportunity to handle the request.

*Chain the receiving objects and move the request
through the chain until it is handled by the object.
*Launch-and-leave requests with a single storage
pipeline containing a large number of handlers,

*It is an object-oriented linked list which traverse
recursively.

Objective

Prevent hard wiring handler /processing

element /node objects relationships and precedence,
or mappings of request-to-handler as there’s always
a stream of requests that needs to be handled.

Disadvantage

Not handling all requests.

When to use

* A request can be handled by more than one object.
* Issuing a request to one of many objects, without
identifying the receiver clearly.

* The objects which handle a request must be
identified dynamically.

52

Table 18: Command “Action/Transaction” Design Pattern

Function To isolate the request from the execution.

Intent * The requests are encapsulated as objects
and helps parameterize the client with different
queue/requests/log requests.

* An object-oriented callback.
* Support "invocation of an object method” to
the full status of the object.

Objective The request is turned itself into an object while
knowing nothing about the requested operation or
the request receiver,

Disadvantage | Since there is a new layer between senders and

receivers is being introduced,
the code might become more complicated.

When to use

* When issuing requests into objects while knowing
nothing about the requested operation.

* When undo is supported.

* Implementation of menus which is easy with
Command objects because it parameterize objects.
* Structure a system based on basic operations
through high-level operations.

* Help recording changes so that in the event of

a system crash they can be reapplied.

* Specify, queue, and run requests at various times.

Table 19:

State "Objects for States” Design Pattern

Function

Shift among different implementations of
the whole functionality.

Intent

* Authorize an instance to change its behavior
when a change happen in its internal state.

The class of the instance will appear to be changed.
* A state machine that is concerned about
object-oriented.

* Collaboration,polymorphic wrapper, wrapper.

Objective

It aids the monolithic instance’s behavior to change
based on its state by creating a class to each state,
instead of implementing all behaviors on its own.

Disadvantage

* Implementing the pattern can be excessive
if machine’s state consist of few states or
barely changes.

When to use

When an instance behavior rely on it state, and
it needs to change its behavior at run time relying
on that state.

53

Table 20: Memento "Token” Design Pattern

Function

Is to capture and object’s internal state so that the
object can be restored to this state later
(Storing a snapshot).

Intent

Lets you capture and restore the latest state of
an instance without revealing its implementation
details.

Objective

It prevents the loss of an instance state by creating
a snapshot of the instance and restores it back to its
previous state when it faces any failures.

Disadvantage

* The majority of the dynamic programming
languages can’t assure that the state within

the memento design pattern remains unaffected.

* It may cause RAM consumption if user creates
snapshot regularly.

When to use

* It aids the user to recover and restore from any
failures because it can revert to its previous state.

* When a direct interface gathering the state of

an instance would crack the instance encapsulation
and expose implementation details.

54

Table 21: Interpreter Design Pattern

Function Defining a grammatical description for a certain
language and implements an interpreter to handle
this grammar,

Intent * Provided a language, determine a n illustration for
its grammar among the interpreter that applies

the illustration to interpret sentences in

a certain language.

* Mapping a certain domain to a language,

then the language into certain grammar and

then the grammar into a object oriented hierarchical
design.

Objective In a well-defined and understood domain, a class of
problems happens repetitively.

If the domain was defined by a "language,”

an “engine” interpretation would easily fix problems.

Disadvantage | Complicated grammar are hard to preserve.

The Interpreter design pattern illustrates at least one
class for each and every rule in the grammar.
Because of that the grammar that contains many
rules are hard to be managed and preserved.

When to use * The optimum usage is when the grammar is not
complicated. For complicated grammars,

the hierarchy of each class becomes big and hard to
manage. Using tools would be better in cases like
that such as parser generators.

* The perfect usage is when efficiency is not

the major matter. All the efficient interpreters are
not directly implemented by interpreting parse trees,
first they get translated into different form.

as an example, regular expressions are converted to
state machines. After that with the Interpreter
design pattern the translator gets implemented.

55

Table 22: Template Method Design Pattern

Function

* Illustrates the skeleton of a certain method in

an activity.

setting aside some procedures to subclasses.

* It lets the subclasses reconsider certain procedures
of a method without any change in

the method’s structure.

Intent

Highlight and assure the execution of
universal process.

Objective

Prevents duplication by excluding the duplicate
effort that happens when two various elements have
the similarities but determine no reuse of typical
implementation or interface.

Disadvantage

* Implementing the pattern can be excessive

if machine’s state consist of few states or barely
changes.

* Liskov Substitution Principle may get violated by
forcibly putting an end to a regular step
implementation by a subclass.

* Some of the clients may face some limitations by
implemented skeleton of a method or an algorithm.

When to use

* Implementing the similar sections of a method once
and authorize it to subclasses so it can implement
the behaviors that may alter.

* When there is a similar behavior among different
subclasses that should be determined and localized
in one class to avoid duplication of code.

* Authorize at which exact points sub classing

is permitted.

56

Table 23: Visitor Design Pattern

Function To select discrete functionality through the type of
object.

Intent * it illustrates a process to be implemented on
the fundamental of the object’s structure.

* Creates a new process without any change in the
fundamentals of the classes.

*The usual and typical approach to recover lost type
information on which it operates.

*forming the most accurate decisions depending on
the two objects type.

*Double dispatch.

Objective *Prevents the pollution of node classes caused by
many unrelated activities that require to be executed
on node instances in a different structure.

* Avoids the need to query the type of every node
and to cast the pointer to the appropriate type ahead
of executing the needed.

Disadvantage | * When updating all visitors each time a new class

is added or removed from the factors hierarchy.

* Visitors might find it hard necessary access to
the private attributes and methods of the factors that
they should interact with.

When to use

* When instances structure is shared by many
applications that depends on them.

* It lets you keep linked activities together through
defining each one of them in one class.

57

Table 24: Mediator Design Pattern

Function

* It encapsulates all interconnections and

serves as a coordination hub.

* Extract all classes relationships into a separate
class, separating from the rest of the components any
changes to a specific component.

* Responsible for controlling and

organizing client communications.

Intent

* Identifies an object encapsulating the interaction
of a group of objects.

* Design an intermediate step for many peers to be
decoupled.

* Promoting many-to-many relationships to

"full object status” between communicating peers.
* Stopping objects from directly referring to each
other, it supports loose coupling and allows to vary
their communication independently.

Objective

* Reduce direct reference between objects as it helps
creating loosely-coupled interaction between them.
* Facilitate the communication between objects in a
way where the objects are unaware of other objects’
presence. Instead of being coupled to hundreds of
other objects, they rely on a single mediator class.

* Prevent creating a complex system caused by direct
communication when multiple objects must interact
with each other to handle the request.

Disadvantage

A mediator may transform into a "God Object”
over time.

When to use

* In well-defined yet complex ways, a group of
objects interact and it is impossible to reuse

an object as it refers to many objects and interacts
with them.

* Behavior among several classes should become
flexible without much sub-classing and

the inter-dependencies generated are unstructured
and hard to understand.

58

9

Table 25: Observer "Dependents/Publish Subscribe” Design Pattern

Function To synchronize state change.

Intent * Defines a one-to many dependency between objects
so that all its dependents are automatically notified
and updated when on e object changes state.

* Encapsulate the core components in a subject
concept and the components of the Ul

(User Interface) in an Observer hierarchy.

* The "View” part of “Model-View- Controller”.

Objective To prevent insufficient scalability in a big
self-contained design as new monitoring or graphing
specifications are levied.

Disadvantage | Subscribers are informed in random order.

When to use When having a system design in which several
entities are involved in any probable update to some
special second entity object.

References

References

1]
2]

3]

[4]

8]

M. E. Abeer Hamdy, “Topic modelling for automatic selection of software
design patterns,” JSW, vol. 13, pp. 260268, 2018.

A. K. Dwivedi, A. Tirkey, R. B. Ray, and S. K. Rath, “Software design
pattern recognition using machine learning techniques,” pp. 222-227, 2016.

M. Elallaoui, K. Nafil, and R. Touahni, “Automatic transformation of user
stories into uml use case diagrams using nlp techniques,” Procedia computer
science, vol. 130, pp. 42-49, 2018.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

A. Hamdy and M. Elsayed, “Automatic recommendation of software design
patterns: Text retrieval approach.” JSW, vol. 13, no. 4, pp. 260-268, 2018.

H. Herchi and W. B. Abdessalem, “From user requirements to uml class
diagram,” arXiv preprint arXiw:1211.0713, 2012,

F. Palma, H. Farzin, Y. Guéhéneuc, and N. Moha, “Recommendation system
for design patterns in software development: An dpr overview,” in 2012
Third International Workshop on Recommendation Systems for Software
Engineering (RSSE), June 2012, pp. 1-5.

A. Shevts, Dive Into Design Patterns. Refactoring.Guru, 2018,

59

