Software Requirement Specification Document for
Automatic Recognition of Suitable Design
Pattern Project

Clara Kamal, Farida Mohamed, Hashem Mohamed, Veronia Emad
Supervised By: Dr. Taraggy Mohiy and Eng. Nada Ayman

February 25, 2020

1 Introduction

According to the English dictionary, Design Pattern (DP) is defined as a for-
mal approach of recording a generic reusable solution to a design problem in a
specific environment. Software design pattern is considered as one of the most
productive discoveries in the software industry due to its major role in improv-
ing the software quality. However, choosing the suitable design pattern for each
design problem is considered a challenging mission that requires a good base
knowledge about each DP and its functionality.

1.1 Purpose of this document

Through this Software Requirements Specification document, we aim to provide
a detailed description for the proposed approach. It presents an automatic se-
lection of the suitable design pattern depending on the user requirements using
a Q/A approach through a GQM-Based Tree Model. As result, it will achieve
the software engineers’ task, with the most accurate results. This document
is intended for the stakeholders and developers of the system to present the
functional /non-functional requirements, purpose and goals of the proposed ap-
proach.

1.2 Scope of this document

Since the manual selection process of DPs is considered challenging and critical,
the proposed system can be described as an assisting tool for software engineers
(SWE). It will help in overcoming difficulties and misunderstandings that may
come across software engineers while selecting the suitable design pattern in
different scenarios. Moreover, the system is considered as a control point for

managing the back-end composition by the system administrator. This doc-
ument presents the characteristics, objectives and constraints for each of the
users: software engineer and system administrator.

1.3 Overview

As shown in Figure 1, the process starts with taking input from the software
engineer. He inserts his objects and class then fills the form of questions con-
cerning the DPs categories that are retrieved from the database. These form
questions and user answers pass through the GQM-Based Tree Model to be used
for the next phase, which is the weight calculation phase. This phase will re-
trieve the weight of each metric (answer) in order to calculate the weight results
for each category. Hence, the highest weight value will be the selected category.
The next step will retrieve the DPs questions for the selected category in the
previous step then the user will start filling them. The same process of selecting
the appropriate category will be repeated in order to select the suitable DP.
The Highest weight weight value will be the selected DP. The last phase will be
the class diagram generation. It will use the selected DP from the previous step
and the objects and classes that the user inserted at the beginning to generate
the formatted PUML file to be applied to PlantUML API which will generate
the class diagram.

“* | I—.—I : oA Evaluate answers
A : / : : e :
. . = @ - YES NO mmmp |
Retrieve Metrics

h r =
Software Category * i K%
Database a i
Engineer Questions g v‘ weight

User | Category Questions Answering GQM-Based Tree Model) l

‘ Weight Calculation

<4

Weight Results

!

ST e =B

= weight

<% e

; Design patterns
l GQM-Based Tree Model Questions Answering

Category

Weight Results |

Weight Calculation | </>

— Suitable Design Pattern

Output

Objects l: vz

Input Classes ; - W Wi
PUML File Plug-In Class
Methods Formatted PUML File . (PlantumL) | Diagram

Generation API Applying Output

Figure 1: System Overview

Visual Paradigm Online Diagrams Express Ejdifion

User Manipulation

DP Automatic
Recognition

Weight Calculation

Q/A Module Module

Class Diagram
Generation

Vi

20kl Paradigm Online Diagrams Express Edition

Figure 2: Context Diagram

1.4 Business Context

As the process of detecting the appropriate software design patterns for each
design problem is a main concern in all software engineer’s problems in nowa-
days, there is a an important need for an automated DPs detector. It will save
time, provide more accurate results and cost less than manual detection. More-
over, our proposed automated system is aiming to reduce the confusion that
may cause wrong selections and misunderstanding due to the similarities in the
purposes, actions and structures of several design patterns.

2 General Description

2.1 Product Functions
Software Engineer:
e User Authentication
e View HomePage
e View Profile
e Ldit Profile
e Answer Questions
e View DP Descriptions
e View Result
e Print Result
e View History
e Delete History Record

e (Clear All History

System Administration:
e User Authentication
e Add Admin
e View All Users
e Delete User
e CRUD DPs
e CRUD DP Description
e CRUD DP Question
e CRUD DP Weight
e CRUD Category
e CRUD Category Description
e CRUD Category Question
e CRUD Category Weight

Weight Calculation Module:
¢ Retrieve User Answers
e Retrieve Metrics Weights

e Compute Final Metric Weight

2.2 Similar System Information

A recommender system [5] relies on a Goal-Question-Metric approach [2] to pro-
duce a software process pattern [1] recommendation system. The system consists
of two phases: Q/A designing phase and pattern recommendation phase. The
Q/A designing phase contains four steps. First, pre-processing of the process
pattern library. Then, building a topic model and get text-topic probability dis-
tribution matrix by applying LDA [3] on all software process patterns scenario
descriptions. Next,calculating sentences clustering using K-means algorithm [6]
to probability distribution matrix and calculating topic similarity using Eu-
clidean distance using the formula (1).

distance(x,y) =

Finally, the designing of the questions from each cluster of pattern descrip-
tions then assigning the correct answer to each question on every related pat-
tern. The second phase which is the recommendation of the pattern depending
on the answers, starts by recording the weight of each answer. It calculates all
the matching degrees between patterns and questions then selecting the top five
process patterns. The system designed 57 questions for 89 patterns. The system
was evaluated by comparing it with similar systems using TF-IDF (3) and the
evaluation result shows that this approach contributes a high F-score (2) which
is 11.6% higher than that of the traditional TF-IDF approach. Moreover, the
average precision (5) can reach 57%.

P 2 # Precision * Recall @)
— score =
Recall + Precision

tfidf; g =tfiq xlog (dﬁﬁ) (3)
TP
ceall = ———— 4
Recal TP FN (4)
. TP
Precision = TP FP (5)

2.3 User Characteristics

The system concerns two types of users, Software Engineers and System Admin-
istrators. Each user-type needs some requirements in order to get the highest
benefit from the system.

e Software Engineer:

— Should have a moderate background about the definition of design
patterns, their aim and how they are used

— Should have a moderate background about class diagrams
— Should have basic computer skills

— Should be able to define all the requirements needed to give a valid
answer for each question in the selection process.

e System Administrator:

— Should have basic computer skills
— Should have a standard knowledge about the system’s functionality

— Should have a reliable educational knowledge about each design pat-
tern

— Should have aware of the system’s composition behind its function-
ality

— Should be able to deal with and manage the database through the
GUI displayed

— Should have a moderate background about class diagrams and the
class diagram representation of each design pattern

2.4 User Problem Statement

Software engineers face a difficulty in selecting a suitable design pattern for the
system they are developing based on the user requirements. This may lead to
the wrong selection a design pattern, which is known as Anti-Patterns [4], which
makes it worse than using no DP at all. As a result, software engineers must
re-design and re-implement their systems after discovering the anti-patterns
in their codes, wasting time, effort and cost. For demonstration, a question-
naire was made to get the percentage of wrong design pattern selections. Thus,
according to Fig.3, 72.7% of the responses showed that they already faced a
problem before. Therefore, determining the suitable DP needs to be an efficient
and accurate process.

Have you faced a problem before while choosing the suitable software
design pattern for your system?

® Yes
® No

Figure 3: Statistics

2.5 User Objectives

The system is developed in a form of an assisting tool for software engineers in
order to:

e Provide an automatic selection of the suitable design pattern through
requirements gathering in the form of Question/Answer.

e Generate a UML class diagram based on the design pattern selected and
user requirements

e Provide a description for the design pattern selected at the end of the
process to help the software engineer understand the reason of the selection

Moreover, the system will provide the administrator with a friendly GUI that
allows him to maintain and update the selection structure by adding, updating
and removing questions of the requirements gathering form.

2.6 General Constraints

e The system is applicable only for PCs and laptops.

e Java JDK must be installed.

3 Functional Requirements

3.1 Software Engineer

3.1.1 Logln

Name Log In

Description It’s an authentication level that needs to be passed in order
to let the users access their accounts and use the system.

Input The user's Email and Password

Output Homepage will be displayed

Requirements | User must be logged out

Action User must be registered(email and password exists)

Source GUI

Destination Database

Pre-Condition

Email and password are found

Post-Condition

User is logged in

Side Effect None
3.1.2 Log out
Name LogOut
Description User logs out from his account
Input None
Output Message to confirm logging out then display log in screen
Requirements | User must be logged in
Action None
Source GUI
Destination GUI
Pre-Condition | None
Post-Condition | User is logged out
Side Effect None

3.1.3 Register

Name Register

Description User registers a new account to the system
Input Email First Name,Last Name, Password
Output A message to confirm adding the user account
Requirements | User must be a software engineer

Action Check that Email exists and not repeated
Source GUI

Destination Database

Pre-Condition | None

Post-Condition

User is added in the database with user-type software engi-
neer

Side Effect

None

3.1.4 Update Info

Name Update Info

Description User can edit them his information

Input User 1D

Output A message to confirm updating the user information
Requirements | User must be logged in

Action Check if the user id exists

Source GUI

Destination Database

Pre-Condition

Get user information from GUI

Post-Condition

User data is updated

Side Effect None

3.1.5 Profile
Name Profile
Description Display the user profile
Input User ID
Output User Profile is displayed
Requirements | User must be logged in
Action Check if user id exists
Source Database
Destination GUI
Pre-Condition | None
Post-Condition | This user’s information are retrieved
Side Effect None

10

3.1.6 View History

Name ViewHistory

Description Display All Previous User’s Recommendation Processes
Input User ID

Output History Records are displayed

Requirements | User must be logged in

Action Check if the user have previous recommendation processes
Source Database

Destination GUI

Pre-Condition | None

Post-Condition

All history records for this user id are retrieved

Side Effect

None

3.1.7 View Homepage

Name ViewHomepage
Description Display homepage to user
Input None

Output Homepage is displayed
Requirements | User must be logged in
Action None

Source Database

Destination GUI

Pre-Condition | None

Post-Condition | Data retrieved from database
Side Effect None

3.1.8 View Result

Name ViewResult

Description User view the final output of the recommended design pat-
tern and the generated class diagram

Input Process 1D

Output Result Form is displayed

Requirements | User must be logged in as software engineer

Action None

Source Database

Destination GUI

Pre-Condition

All questions must be answered

Post-Condition

Result is retrieved and displayed

Side Effect

None

11

3.1.9 View DP Descriptions

Name ViewDPDescriptions

Description User view all DP names and descriptions
Input None

Output DP names and descriptions
Requirements | User must be logged in

Action Check if DP descriptions is not empty
Source Database

Destination GUI

Pre-Condition | None

Post-Condition

DP names and descriptions are retrieved from database

Side Effect

None

3.1.10 Print Result

Name PrintResult

Description Convert the result form to PDF form to be printed

Input result

Output PDF file

Requirements | the existence of a result

Action takes the result if existed and convert it to PDF and display
it to be dowbloaded.

Source database

Destination GUI

Pre-Condition | ViewResult

Post-Condition | None

Side Effect None

3.1.11 Delete History

Name DeleteHistory

Description User delete a record from his previous recommendation pro-
cesses

Input History record ID and user 1D

Output A message to confirm that the record was deleted

Requirements | User must be logged in

Action Check if user have previous history

Source GUI

Destination Database

Pre-Condition | None

Post-Condition

History record is deleted from database with specific id

Side Effect

None

12

3.1.12 Delete All History

Name DeleteAllHistory

Description User deletes all his previous recommendation processes
records

Input User 1D

Output A message to confirm that all records were deleted

Requirements | User must be logged in

Action Check if user have previous history

Source GUI

Destination Database

Pre-Condition | None

Post-Condition

All History records are deleted from database

Side Effect

None

3.1.13 Genera

te Questions

Name Generate Questions

Description Questions are retrieved from database to user in order to let
him start answering them

Input Question ID, Number of Question

Output The Questions Form

Requirements | User must be logged in as a software engineer

Action If a Question is not answered, the next question won't be
displayed. else, it will display next question and take the
answer input to calculate the total weight.

Source User Input

Destination Database

Pre-Condition

Insert Category

Post-Condition

Calculate Weight

Side Effect

None

13

3.1.14 Calculate Result

Name Calculate Result

Description It calculates the weight of the user’s answers to help him find
the Category with the highest score of weights. It retrieves
the answers weights from the database then calculate their
sum.

Input Question ID, Answer 1D, Answer Weight

Output The Result

Requirements | All the Questions must be answered by the user and all the
Answers must have weights in the database.

Action If an Answer doesn’t have weight the weight won’t be cal-
culated. else, it will display the Result and show the user
the suitable Category according to his answers.

Source Database

Destination GUI

Pre-Condition

Answer Questions

Post-Condition

View Result

Side Effect

None

3.2 System Administrator

3.2.1 Add User

Name Add User

Description Create new admin account to be able to choose their user-
type to avoid letting anyone from choosing their own user-
type to avoid conflicting permissions

Input Firstname, lastname, emailaddress, password, usertype

Output username and password given to the faculty member

Requirements | it’ll take the information from the inputs fields

Action the AddUser form will first ask the admin about the user-
type then based on his choice it’ll show or hide the needed
input fields according to this choice to fill them.

Source inputs from the admin

Destination database

Pre-Condition

logged in as admin

Post-Condition

generate the user id of the admin

Side Effect

none

14

3.2.2 View User

Name View User

Description it will retrieve the user’s info from the database

Input user id

Output the selected User is displayed

Requirements | the id of the user must exist in the database

Action The admin will search for a user with id so the function will
read the info of the user.

Source Database

Destination GUI

Pre-Condition

create user

Post-Condition

Edit User and Delete User

Side Effect

none

3.2.3 View All

Users

Name View All Users

Description it will retrieve the users’ info from the database
Input none

Output users info

Requirements | none

Action The admin will display all the info of all users.
Source Database

Destination GUI

Pre-Condition

create user

Post-Condition

Edit User and Delete User

Side Effect

none

3.2.4 View All Categories

Name View All Categories

Description it will retrieve the Categories’ info from the database
Input none

Output Categories info

Requirements | none

Action The admin will display all the info of all Categories.
Source Database

Destination GUI

Pre-Condition

create Category

Post-Condition

Edit Category and Delete Category

Side Effect

none

3.2.5 View All Design Patterns

Name View All Design Patterns

Description it will retrieve the Design Patterns’ info from the database
Input none

Output Design Patterns info

Requirements | none

Action The admin will display all the info of all Design Patterns.
Source Database

Destination GUI

Pre-Condition

create Design Pattern

Post-Condition

Edit Design Pattern and Delete Design Pattern

Side Effect

none

3.2.6 Delete User

Name Delete User

Description It will update the user’s is_deleted column in the database
to 1.

Input user id

Output none

Requirements | the id of the user must exist in the database

Action It will take the id of the user and deletes it.

Source database

Destination database

Pre-Condition | Create User and View User

Post-Condition | none

Side Effect none

3.2.7 Encryption/Decryption

Name Encryption/Decryption

Description To make password encrypted with encrypted keys

Input password

Output Encrypted password

Requirements | there must be a password taken as an input

Action It encrypts password and reads password from table users
in database and decrypt it into it’s original form and then
give this password

Source password from table users in database

Destination Database

Pre-Condition

Readable password

Post-Condition

hidden password

Side Effect

none

16

3.2.8 Insert Category

Name Insert Category

Description Create new design pattern category.

Input Category name, Category description, Category questions,
Category question’s yes weight, Category question’s no
weight

Output none

Requirements | none

Action It will insert a new category to the database by setting all
the info needed for each category which is the Category
name, Category description, Category questions, Category
question’s yes weight, Category question’s no weight if it
doesn’t already exist or the input is not null.

Source user input

Destination database

Pre-Condition | none

Post-Condition

edit category, view category, delete category, insert design
pattern, edit design pattern, view design pattern, delete de-
sign pattern, view all categories, view all design patterns.

Side Effect

none

3.2.9 Edit Category

Name Edit Category

Description Update an existing design pattern category.

Input Category name, Category description, Category questions,
Category question’s yes weight, Category question’s no
weight

Output none

Requirements | the id of the selected Category must exist in the database

Action The admin will search for a Category with id so the function
will read the info of the Category selected if the id already
exists and lets the admin edits it.

Source user input

Destination database

Pre-Condition

insert category, view category

Post-Condition

delete category, insert design pattern, edit design pattern,
view design pattern, delete design pattern, view all cate-
gories, view all design patterns.

Side Effect

none

17

3.2.10 View Category

Name View Category

Description View the chosen design pattern category and display all its
info.

Input Category id

Output the selected Category is displayed

Requirements | the id of the selected Category selected must exist in the
database

Action The admin will search for a Category with id so the function
will display the info of the Category if the id already exists.

Source database

Destination GUI

Pre-Condition

insert category

Post-Condition

edit category, delete category, insert design pattern, edit
design pattern, view design pattern, delete design pattern.

Side Effect

none

3.2.11 Delete

Category

Name Delete Category

Description It will update the Category’s is_deleted column in the
database to 1.

Input Category id

Output none

Requirements | the id of the Category selected must exist in the database

Action It will take the id of the Category and deletes it if the id
already exists.

Source database

Destination database

Pre-Condition | Insert Category and View Category

Post-Condition | none

Side Effect none

18

3.2.12 Insert Design Pattern

Name Insert Design Pattern

Description Create new design pattern category.

Input Category ID, Design Pattern name, Design Pattern descrip-
tion, Design Pattern questions, Design Pattern question’s
ves weight, Design Pattern question’s no weight

Output none

Requirements | none

Action It will insert a new Design Pattern to the database by set-
ting all the info needed for each category which is the Design
Pattern name, Design Pattern description, Design Pattern
questions, Design Pattern question’s yes weight, Design Pat-
tern question’s no weight if it doesn’t already exist or the
input is not null.

Source user input

Destination database

Pre-Condition | none

Post-Condition

edit Design Pattern, view Design Pattern, delete Design
Pattern, view all design patterns.

Side Effect

none

3.2.13 Edit Design Pattern

Name Edit Design Pattern

Description Update an existing design pattern category.

Input Category ID,Design Pattern name, Design Pattern descrip-
tion, Design Pattern questions, Design Pattern question’s
ves weight, Design Pattern question’s no weight

Output none

Requirements | the id of the selected Design Pattern must exist in the
database

Action The admin will search for a Design Pattern with id so the
function will read the info of the Design Pattern selected if
the id already exists and lets the admin edits it.

Source user input

Destination database

Pre-Condition

insert Design Pattern, view Design Pattern

Post-Condition

delete Design Pattern, view all Design Patterns.

Side Effect

none

19

3.2.14 View Design Pattern

Name View Design Pattern

Description View the chosen design pattern and display all its info.

Input Design Pattern id

Output the selected Design Pattern is displayed

Requirements | the id of the selected Design Pattern selected must exist in
the database

Action The admin will search for a Design Pattern with id so the
function will display the info of the Design Pattern if the id
already exists.

Source database

Destination GUI

Pre-Condition

insert Design Pattern

Post-Condition

edit Design Pattern, delete Design Pattern, view all Design
Patterns.

Side Effect

none

3.2.15 Delete Design Pattern

Name Delete Design Pattern

Description It will update the Design Pattern’s is_deleted column in the
database to 1.

Input Design Pattern id

Output none

Requirements | the id of the Design Pattern selected must exist in the
database

Action It will take the id of the Design Pattern and deletes it if the
id already exists.

Source database

Destination database

Pre-Condition

Insert Design Pattern and View Design Pattern

Post-Condition

none

Side Effect

none

4 Interface Requirements

4.1 User Interfaces

4.1.1 GUI

20

) FXML Login.fxml] X

Automatic Recognition of Suitable
Design Pattern

Login

Password:

: Login
click here to create a new account

Figure 4: Log In Form

@9 FXML Home.fxml o e

Automatic Recognition of Suitable
Design Pattern

Design Pattern Category Detector

Design Patterns

Profile

History

Logout

Figure 5: Homepage

& FXML Profile.fxm =
Profile

First Name:

Hashem

Last Name:

Mohamed

E-mail:

hashemmohamed@gmail.com

Password:

Figure 6: User Profile

€ FXML Register firm [

Automatic Recognition of
Suitable Design Pattern

Registration

First Name:

Last Name:

Password:

click here to login Cancel Register

Figure 7: Register Form

22

%) FXML Form fml o X

Q1. Is this class more concerned about the way the
objects are created?

PREWOUS
Figure 8: Form(1)
() FXML Form fiml o X

Q7. Will this class have any relationships between it and
any other classes?

PREVIOUS

Figure 9: Form(2)

23

4.1.2 CLI

Git :
e git init, to initialize a new repository.
e git clone, to use an existing repository.

e git add, to add files.

e git commit -a, to commit all new files added and any changes made on

existing files.

e git pull, to fetch the files in the main repository and merge to the local

working copy.

e git push, to push committed changes to the main repository.

4.1.3 API

o JavaFx

e PlantUML

e Google Login

e Apache PDFBox

4.1.4 Diagnostics or ROM
N/A

4.2 Hardware Interfaces

N/A

4.3 Communications Interfaces
N/A

4.4 Software Interfaces

NetBeans will be the development environment for the system’s code.

5 Performance Requirements

The system shall be able to retrieve all questions of the three categories and 23
DPs stored in the database, process all user answers then generate the result of
the recommended DP. It should operate in a high speed and high recognition

accuracy.

24

6 Design Constraints

6.1

6.2

Standards Compliance
64-bit operating system, x64 based processor.

PC with 4.00 GB of RAM. (Minimum).

Hardware Limitations

Since the system is a desktop application, it won't need any hardware device
except a PC or a laptop to run on.

7
7.1

7.2

Other non-functional attributes

Security

Each user-type is restricted to some specific permissions and actions on
the system to prevent accidental or malicious access.

User’s sensitive information such as passwords should never be displayed
on screen. It should be encrypted using special characters.

Each record in the database should be encrypted so if any data changed,
the changed row can be detected easily.

=4

The system should be locked for 10 minutes in case of more than 5 suc-
cessive attempts of logging in with wrong email or password.

The system’s database should be accessed only by system administrators,

The system must be able to differentiate between the different user-types
logging in attempts.

The system must verify each email entered through the registration pro-
cess.

When the user exits the system, the user’s account is logged out

Maintainability

Maintainability of the system will be achieved by using MVC design pattern
that divides the system into three modules to separate the data handling in
each module. The system should provide a straight-forward friendly GUI that
allows the system administrator to add, update and delete any of the accessible
database information easily such as the questions in the tree structure behind
the design pattern selection process.

7.3 Portability

Since the system is implemented using Java, it provides source code portability.
Java is platform independent since it can be written once and run anywhere.
Therefore, the system is portable since it can run on Windows, Mac, Linux, etc.

7.4 Extensibility

The system is easy to be extended and updated with the minimum effect by
applying EAV data model. The system administrator can add new questions and
update or delete any of the existing questions without affect the tree structure
behind the design pattern selection process.

26

8 Preliminary Object-Oriented Domain Analy-
sis

27

9 Operational Scenarios

Weight Calculation Module

Software Engineer System Administration

Visual Paradigm Online Diagrams Express Edifion

28

9.1 Use Case: User Authentication
9.1.1 Log-in

Actors: Software Engineer, System Administrator

Description: The user will be able to log-in to his account

Data: User’s email and password

Stimulus: User Command issued by the Software Engineer or System Admin-
istrator

Response: User will be logged in

Comments: The user must be registered

9.1.2 Log-out

Actors: Software Engineer, System Administrator

Description: The user will be able to log-out from his account

Data: None

Stimulus: User Command issued by the Software Engineer or System Admin-
istrator

Response: User will be logged out

Comments: User must be logged in

9.1.3 Register

Actors: Software Engineer

Description: The user will be able to register a new account

Data: User’s information (email,name,password,birth-date)

Stimulus: User Command issued by the Software Engineer

Response: Confirmation message that a verification email has been sent
Comments: None

29

9.2 Weight Calculation Module

Retrieve User Answers

Weight Calculation Module

9.2.1 Use Case: Retrieve User Answers

Actors: Weight Calculation Module

Description: The answers submitted by the user are retrieved from the database
Data: User ID, Form ID

Stimulus: System Command

Response: Answers are inserted into an array

Comments: The user mush submit the answers of the form

9.2.2 Use Case: Retrieve Metrics Weights

Actors: Weight Calculation Module

Description: The weight of each user answer is retrieved from the database
Data: Answers’ array

Stimulus: System Command

Response: Weights are inserted in an array

Comments: Perform after (Retrieve User Answers) use case

9.2.3 Use Case: Compute Final Metric Weight

Actors: Weight Calculation Module

Description: All the weights of user answers are added together
Data: Weights™ array

Stimulus: System Command

Response: The final weight result is computed

Comments: Perform after (Retrieve Metrics Weights) use case

30

9.3 Software Engineer

Software Engineer

HEIH I

i
§
:

:
;

9.3.1 Use Case: View HomePage

Actors: Software Engineer

Description: SWE will view the system’s homepage
Data: None

Stimulus: User Command issued by the Software Engineer
Response: Homepage is displayed

Comments: SWE must be logged in

9.3.2 Use Case: View Profile

Actors: Software Engineer

Description: SWE will view his own profile

Data: User profile’s information from the database
Stimulus: User Command issued by the Software Engineer
Response: User profile is displayed

Comments: SWE must be logged in

31

9.3.3 Use Case: Edit Profile

Actors: Software Engineer

Description: SWE will update his profile information
Data: User ID, an array of the changed profile values
Stimulus: User Command issued by the Software Engineer
Response: The changed values are saved in the database
Comments: SWE must be logged in

9.3.4 Use Case: Answer Questions

Actors: Software Engineer

Description:SWE will answer the view the questions form to answer it
Data:Questions from database

Stimulus: User Command issued by the Software Engineer
Response:Questions Form is displayed

Comments: SWE must be logged in

9.3.5 Use Case: View DP Descriptions

Actors: Software Engineer

Description: SWE will view all DP descriptions

Data: DP descriptions from the database

Stimulus: User Command issued by the Software Engineer
Response: DP descriptions are displayed

Comments: SWE must be logged in

9.3.6 Use Case: View Result

Actors: Software Engineer

Description: The final result of the recommended design pattern and the gen-
erated class diagram is displayed to the user after answering the form questions
Data: Highest weight value

Stimulus: User Command issued by the Software Engineer

Response: Result will be displayed

Comments: SWE must be logged in, (Compute Final Metric Weight) use case
must be performed first

9.3.7 Use Case: Print Result

Actors: Software Engineer

Description: The final result of the recommended design pattern and the
generated class diagram are displayed in a PDF form to be printed

Data: The final result of the recommended design pattern and the generated
class diagram

Stimulus: User Command issued by the Software Engineer

Response: A PDF file is displayed

Comments: SWE must be logged in, SWE must answer all form questions and
reach the final result

9.3.8 Use Case: View History

Actors: Software Engineer

Description: SWE will view the history of any previous recommendation pro-
cesses done by him Data: All previous recommendation process for this user
retrieved from database Stimulus: User Command issued by the Software En-
gineer

Response: All History records are displayed Comments: SWE must be
logged in

9.3.9 Use Case: Delete History Record

Actors: Software Engineer

Description: SWE will delete one record from previous recommendation pro-
cesses done by him

Data: The history record id of the record to be deleted

Stimulus: User Command issued by the Software Engineer

Response: Confirmation message that the record was deleted

Comments: SWE must be logged in

9.3.10 Use Case: Clear All History

Actors: Software Engineer

Description: SWE will delete all previous records recommendation processes
done by him

Data: None

Stimulus: User Command issued by the Software Engineer

Response: Confirmation message that all records were deleted

Comments: SWE must be logged in

9.4 System Administration

System Administration

9.4.1 Use Case: Add Admin

Actors: System Administration

Description: The admin will register new admin by adding his information
Data: New admin’s information

Stimulus: User Command issued by the Admin

Response: Confirmation message that the admin was added to the database
Comments: Admin must be logged in

9.4.2 Use Case: View All Users

Actors: System Administration

Description: The admin will view all users registered to the system
Data: All users’ information retrieved from database

Stimulus: User Command issued by the Admin

Response: All users are displayed in a tabular form

Comments: Admin must be logged in

34

9.4.3 Use Case: Delete User

Actors: System Administration

Description: The admin will delete a registered user from database

Data: User id that is to be deleted

Stimulus: User Command issued by the Admin

Response: Confirmation message that the admin was deleted from database
Comments: Admin must be logged in

9.4.4 Use Case: CRUD DPs

Actors: System Administration

Description: The admin will create,read,update and delete design patterns
to/from the database

Data: (Read operation: All DPs data retrieved from database), (Update: The
DP id that is to be updated and retrieve its data then add the updated data),
(Delete: The DP id that is to be deleted)

Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

9.4.5 Use Case: CRUD DP Description

Actors: System Administration

Description: The admin will create,read,update and delete design pattern de-
scriptions to/from the database

Data: (Read operation: All DP descriptions retrieved from database), (Up-
date: The DP description id that is to be updated and retrieve its data then
add the updated data), (Delete: The DP description id that is to be deleted)
Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

9.4.6 Use Case: CRUD DP Question

Actors: System Administration

Description: The admin will create,read,update and delete design pattern
questions to/from the database

Data: (Read operation: All DP questions retrieved from database), (Update:
The DP question id that is to be updated and retrieve its data then add the
updated data), (Delete: The DP question id that is to be deleted)

Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

9.4.7 Use Case: CRUD DP Weight

Actors: System Administration

Description: The admin will create,read,update and delete weights for the
questions to/from the database

Data: (Read operation: All DP weights retrieved from database), (Update:
The DP weight id that is to be updated and retrieve its data then add the
updated data), (Delete: The DP weights id that is to be deleted)

Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

9.4.8 Use Case: CRUD Category

Actors: System Administration

Description: The admin will create,read,update and delete design pattern cat-
egories to/from the database

Data: (Read operation: All categories retrieved from database), (Update: The
category id that is to be updated and retrieve its data then add the updated
data), (Delete: The category id that is to be deleted)

Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

36

9.4.9 Use Case: CRUD Category Description

Actors: System Administration

Description: The admin will create,read,update and delete design pattern cat-
egories’ descriptions to/from the database

Data: (Read operation: All categories descriptions retrieved from database),
(Update: The category description id that is to be updated and retrieve its data
then add the updated data), (Delete: The category description id that is to be
deleted)

Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

9.4.10 Use Case: CRUD Category Question

Actors: System Administration

Description: The admin will create,read,update and delete design pattern cat-
egories’ questions to/from the database

Data: (Read operation: All category questions retrieved from database), (Up-
date: The category question id that is to be updated and retrieve its data then
add the updated data), (Delete: The category question id that is to be deleted)
Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

9.4.11 Use Case: CRUD Category Weight

Actors: System Administration

Description: The admin will create,read,update and delete weights of cate-
gories’ questions to/from the database

Data: (Read operation: All category weights retrieved from database), (Up-
date: The category weight id that is to be updated and retrieve its data then
add the updated data), (Delete: The category weight id that is to be deleted)
Stimulus: User Command issued by the Admin

Response: Confirmation message and display result in case of reading
Comments: Admin must be logged in

10 Preliminary Schedule Adjusted

2019 T

"Prasentation
Sils" i) 7ug-Thug
Lecture

Information
Gathering

Registering Project ldea

e 134g- 5

Praposal Evalualion
Dalaset Collection

System Design and Implementation
Preparafion

Nov | Dec 00 [Feb [Mar Agr May Jun

) 310c-31 0
"Wtng Paper Sl Lectue | 145142
Odkys
Skl 1067
Bikgs| 5 100at-170xt

Bikgsl b 1002117 0xl

ettt IENE
Survey Paper !

Preparing SRS Document

SRS Evaluation

Preparing SO0 Document

$0D Evaluation

System Implementation
Prototyps Evaluation

"Writing Final Thesis Thesis" Lecture
System Validation and Tesfing
Deliver sacond Contribution Paper
Technical Evaluation

"Writing V" Lecture

Preparing for final theis

Final Thesis

Cermony

i T e
ki) “E - 16,0
Qe fiDe-13Fed
3 :a'_.'s. 4 Feb- 2076
£ G-l
Bda) Bior- B
Tdasl) g ey
P da‘ys- 1 her- 30 8
S day -0 hun
3 :a;-'s’ May-Thiay
s M4y
PU R
Tdayg) Wim-5dn

fdy] #hn-2on

38

2020

11

Preliminary Budget Adjusted

64-bit Laptop with a cost starting from 4,499.00 EGP

12
12.1

Appendices

Definitions, Acronyms, Abbreviations
GUI:Graphical user interface

GQM: 3-layered approach that identifies goals, questions and metrics in
the form of a tree. Goals are identified at the top, questions needed to
reach these goals in the middle and at last the metrics that are the answers
of the questions.

API: Application Programming Interface
CLI: Command Line Interface
NetBeans: An integrated development environment for Java

Git: a distributed version-control system for tracking changes in source
code during software development.

MySQL: An open-source relational database management system. SQL
stands for Structured Query Language.

UML: Unified Modeling Language
PUML: PlantUML

Software Engineer: The person responsible for the development of a soft-
ware based on the principles of software engineering,.

System Administrator: The person responsible for running the system.
MVC: Model-View-Controller design pattern

EAV: Entity-Attribute-Value data model

LDA: Latent Dirichlet Allocation

Q/A: Question/Answer

TF-IDF: Term Frequency-Inverse Document Frequency

SWE: Software engineer

39

12.2 Collected material

Tables [1],[2] and [3] introduces a part of our generated dictionary, that was ex-
tracted by analyzing and researching different academic resources [7] [8]. This
dictionary helps us in constructing the base of the requirements gathering pro-
cess. It contains the name, intent, function, objective, disadvantage, when to

use and category of each design pattern in a tabular form.

Table 1: Builder Design Pattern

Function

To split the construction of a complex object
from its representation, in order to create dif-
ferent representation in the same
construction process.

Intent

Analyze a complex representation, establish
one of several targets.

Objective

(1)Construct complicated objects (2)To con-
struct different fixed objects using the exact
object building process.

Disadvantage

The code’s overall complexity increases as the
pattern needs multiple new classes to be de-
veloped.

When to use

(1) The algorithm for establishing a complex
object should be independent of the parts that
make up the object and how they're assem-
bled.

(2)The structuring process must allow differ-
ent representations for the object that’s built.

Category

Creational

40

Table 2: Singleton Design Pattern

Function To enclose a global resource.

Intent Make sure the only one instance is created for
a class with a global access point to it.

Objective Prevent creating multiple instances for a spe-
cific class.

Disadvantage (1) Singleton client code is difficult to be unit

tested, Needs a specialized treatment in the
case of multi-threading to prevent the creation
of

many singleton objects. (2) May cover bad
code designs, Breaks the rule of "Single Re-
sponsibility” principle.

When to use

Creating a single instance that can be accessed
by all clients, Providing a harsh control on
global variables.

Category

Creational

Table 3: Strategy Design Pattern

Function

To extract different algorithms in separate
classes and create a generic class that connects
them.

Intent

Allows initializing a collection of strate-
gies/algorithms then encapsulate each of them
and allow them to be interchangeable.

Objective

Prevent large and complex un-maintainable
codes as a result of adding/editing multiple
functionalities/strategies.

Disadvantage

Can be replaced with modern programming
languages that make the same functionality of
the design pattern without complicating the
code.

When to use

(1) Switching between different algorithms
during runtime. (2) Implementing multiple
similar classes that differ only in their be-
haviour.

(3) Covering some complex implementation
details from the client.

Category

Behavioral

41

13 Approach

Unlike other approaches, this approach starts by classifying the category of the
design pattern, which are Creational, Structural and Behavioral, using different
sets of questions that define these categories. The Figure 10 represents the
GQM based tree model. It is a combination between GQM tree and decision
tree. This tree consists of 12 levels of design patterns categories’ questions.
Each question has two possible answers which are yes and no. Each question
has different yes and no weights. The weight is calculated depending on the
sum of answers’ weight of each question. The proposed tree model includes
sequence of questions, the software developer needs to answer these questions
that’s designed upon the definitions of the three categories of the 23 design
patterns: Creational, Structural and Behavioral. Based on the answers, the
flow of the tree model will lead to the corresponding design pattern category.
The developer’s requirements are extracted from the questions’ answers. The
weights of the answers are calculated, and accordingly the system decides for
the suitable design pattern category.

42

56=8 00}=5 001=2

004=8 001=5 001=2

A

43

figure 10: GQM-Based Tree Model

59=8 001=5 00}=2

Z4=8 001=5 004=2

£4=8001L=5 00L=D2 /=0 D0L=5 00}=2

=8 00L=5 00l=

07=8 00L=S 001=
g

08=9 00L=S 00L=D

NI

28=8 001=5 001=2

S3IA

4=8001=8 00L=
58

18=8 00L=8 0OL=D2

44

Figure 11: B2 No Subtree

06=4 001=S 001=2

G8=9 001=S 001=D

8/=9 00L=S 001=0D

Figure 12: B3 No Subtree

88=4 001=S 001L=0

ON

6=4 001=S 00l=
Gd

€6=4 001=S 001=20

SdA

Figure 13: B4 No Subtree

14 Algorithm

In the algorithm below, the steps of how the weights were evaluated will be
explained which is based on the Recommendation System for Design Patterns
in Software Development Conference Paper ?77.

1. Extract the questions from the definitions and the most common problems
that each category solves.

2. Set two answers to each question which are Yes or No only.

3. Set the total weight of the Yes answers regarding each category’s questions
to 100.

4. Set the total weight of the No answers regarding the categories’ questions
to 50.

. Assign the Yes weights of each question depending on the importance of
the problem that the question describes, and the No weights which will
be the half of its corresponding Yes value. (Example: Yes = 40, No = 20)

T

6. Calculate the total sum of the categories’ weight.

7. Find the highest total weight which will be selected as the suitable category
according to the answers given.

15 Experiments

The GQM base tree model was tested on 8 case studies to check if it could
recognize the suitable categories (Creational, Structural, Behavioral). These
case studies were retrieved from Gang of Four - Design Patterns: Elements of
Reusable Object-Oriented Software and Dive into Design Patterns books.

1. Consumers ordering from a catalog. The consumer calls one number and
speaks with a customer service representative. The customer service rep-
resentative providing an interface to the order fulfillment department, the
billing department, and the shipping department. Since the sum of the
Structural category weight is the maximum, so it’ll be chosen as the suit-
able category to this problem scenario.

47

C1
C=0 S=0 B=0 N o

Y

Y

B1
C=60 S=100 B= (

C=60 S=100 B=88

Figure 14: B3 No Subtree

2. The office of the President of the United States is a Singleton. The United
States Constitution specifies the means by which a president is elected,
limits the term of office, and defines the order of succession. As a result,
there can be at most one active president at any given time. Regardless
of the personal identity of the active president, the title, "The President
of the United States” is a global point of access that identifies the person
in the office. Since the sum of the Creational category weight is the max-
imum, so it’ll be chosen as the suitable category to this problem scenario.

C=80 5=62 B=30

C=90 5=62 B=68

Figure 15: B3 No Subtree

3. Let's say you have a pizza shop, and as a cutting-edge pizza store owner,
but you need more than one type of pizza...So then yvou'd add some code
that determines the appropriate type of pizza and then goes about making
the pizza. But the pressure is on to add more pizza types. You realize
that all of your competitors have added a couple of trendy pizzas to their
menus: The Clam Pizza and the Veggie Pizza. Obviously, you need to
keep up with the competition, so you’ll add these items to your menu.
And you haven’t been selling many Greek Pizzas lately, so you decide to
take that off the menu. Since the sum of the Creational category weight is
the maximum, so it’ll be chosen as the suitable category to this problem
scenario.

=35 S=0 B=0

YES

Cc3
=65 S=0 B=g

S
C=90 S=20 B=0

2
YES

NO

B2
C=90 S=62 B=30

B3
C=90 S=62 B=42

C=90 S=62 B=68

Figure 16: B3 No Subtree

50

4. A soccer game problem: A user operates a game in the following sequence
Start the game Select two teams Add or remove players to/from a team
Pick a playground Start a match the system may have a number of Play-
Grounds in it, some Teams etc. Player, who plays soccer Team, with var-
ious players in it Ball, which is handled by various players. PlayGround,
where a match takes place Referee, to control the game Also, you may
need some logical objects in your game engine, like Game, which defines
a football game, including two teams, a ball, a referece, a playground etc
GameEngine to simulate a number of games at a time. TeamStrategy, to
decide a team’s strategy while playing. Since the sum of the Behavioral
category weight is the maximum, so it’ll be chosen as the suitable category
to this problem scenario.

c1
C=0 5=0 B=0 N

YES

b3

C=60 S=70 B=55
B4

C=60 S=70 B=75

YES

BS
C=60 S=70 B=90

YES

=60 S=70 B=100

Figure 17: B3 No Subtree

51

5. Text editor example: Design an editor for documents, documents include
text and graphics. GUI with multiple windows. Several operations on
texts: spelling, searching, etc. Design alternatives: 1. Different classes for
each primitive element: char, line, column, page; and for gliphs like circle,
square, etc. 2. Only one abstract class for a generic gliph, with unique
interface to implement in different ways. Since the sum of the Structural
category weight is the maximum, so it’ll be chosen as the suitable category
to this problem scenario.

c1
=0 S=0 B=0

v

53
C=60 S=75 B=0

Figure 18: B3 No Subtree

52

6. The Company class is the central class that encapsulates several important
features related to the system as a whole. It is required to make sure that
only one instance of this important class can exist. Since the sum of
the Creational category weight is the maximum, so it’ll be chosen as the

suitable category to this problem scenario.
1

=2
C=83 S=20 B=0

NO
vEs
= NO

C=83 S=62 BE=0

=es
C=83 S=62 B=45

=3
NO

Figure 19: B3 No Subtree

53

7. Each bidder possesses a numbered paddle that is used to indicate a bid.
The auctioneer starts the bidding, and observes when a paddle is raised
to accept the bid. The acceptance of the bid changes the bid price which
is broadcast to all of the bidders in the form of a new bid. Since the sum
of the Behavioral category weight is the maximum, so it’ll be chosen as

the suitable category to this problem scenario.
ct

c2
C=35 §=0 B=0

C=75 $=82 B=100

Figure 20: B3 No Subtree

54

8. A waiter or waitress takes an order or command from a customer and
encapsulates that order by writing it on the check. The order is then
queued for a short order cook. Note that the pad of "checks” used by
each waiter is not dependent on the menu, and therefore they can support
commands to cook many different items. Since the sum of the Behavioral
category weight is the maximum, so it’ll be chosen as the suitable category
to this problem scenario.

c1
C=0 S=0 B=C No

s52
C=50 S=20 B=0

B1
C=50 S=50 B=0

— Y E 34@0 3220 B;

Ny
Cmtha>——vES

Ba
—YES C=50 S=50 B=75

g
o> ves

C=50 S=50 B=9S5S

16 References

References

[1]

2]

3]

[4]

[5]

7]

3]

S. Ambler and B. Hanscome, Process Patterns: Building Large-
Scale Systems Using Object Technology, ser. SIGS: Managing Object
Technology. Cambridge University Press, 1998. [Online]. Available:
https://books.google.com.eg/books?id=qJ Jk2yEeoZoC

V. R. Basili, “Software modeling and measurement: the
goal/question/metric paradigm,” Tech. Rep., 1992.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal
of machine Learning research, vol. 3, no. Jan, pp. 993-1022, 2003.

W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis,
Ist ed. New York, NY, USA: John Wiley & Sons, Inc., 1998.

S. Chaturvedi, A. Chaturvedi, A. Tiwari, and S. Agarwal, “Design pattern
detection using machine learning techniques,” in 2018 7th International Con-
ference on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions)(ICRITO). IEEE, 2018, pp. 1-6.

T. Elomaa and H. Koivistoinen, “On autonomous k-means clustering,” in In-
ternational Symposium on Methodologies for Intelligent Systems. Springer,
2005, pp. 228-236.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

A. Shevts, Dive Into Design Patterns. Refactoring.Guru, 2018.

56

17 Database Schema

(0 Heeans 0 82 - 3K
File Edit \iew Mavigate Scurce Refactcr Rur Debug Profie Team Tooks Window Help
fifld% e 1% B

-| Ll[E st tnemnwntes] [50,5 eomnes] % 2506 enbebbess % (55007 Dvtetosd] ([7 5000 nenimaies] ¥| 5 5 renven

iy Pey) % fSLi0Pemtataess) 2 0001 [emiatbess) {ivo
5 A e e Y [6EROTBE-0- UTFRO/F ot
1| SZLECT * FRCM user answers LINIT 100; L
,

SELECT * PR Lezr_arswer, ¥

EHNN N2 Neews (0 Felried Rows: 0 ety s
0 lertnaer et el (uestiarls 5
A
v
v
Outpe =
<ho Ve e S)l3menion ¥ 50 3ewarin ¥ S 4emabi ¥ SOLToabn ¥ S)lGmsim ¢ S0 Tewan ¥ S Eewatic ¥ 513 peatn 4 S0 e ¢ SULL st X
"

Exzcuted 5
Fetching resuliset took 0 s,
Line 1, columr 1

uccessfolly in 0 s,

hot saved

Ezzcution firished after 0,069 s, a0 errors ocourred,

0L exzrients] esnna: arcehly.

57

(0 Herbeans 1602
File Eoit View Mzwgate Scurce Refacter Run Cebug Profile Team Tooks Windaw Help

REAS DO __ETW)

Executed stocassfully i 0,006 s.

tehing resuliset tock [s.
Line 1, colwan 2

£

Bezcution finished after 0,085 3, no errors ccourzed,

S0 sisterven's) darsiar sucsashly,

58

Pragcts Ales Senies ¥ | -| . [E s xEm_c[xnm:m] HEET 1% EEOLE x [s x@m_s[xm:m] HEES % [E]40L20 [Cenbetobass. % {ivo
L ey A Corvedtive: DareDatatase | GHFOEBE-A-UEFES Poh(aulen|as
1| SELECT * FEOM 'wser’ LIMIT 100; 1
i
SELECT ™ FRIM sz LML %
EENEE S Ve [R Wkt R
£ el Frehane Lacham Enzltdines Facaund E
Lbaden rreharizd aeer@yr. oo TeErEm .
ich Sendoas
L Genwrs v
{ ¥
Dol Kenig -
v
gt ¥ =
SOL2zazrafion € SQL3amnrion * SLéewatan X SOLSeeclio X SOLEznilen X SLTesnne % SCBenwanyn % SOLEeatin ¥ SCLLD et X
L)

(0 teshezns 0 2

file Edit \ew Mavigate Soure Refacter Rur Debog Frofile Team Tooks Window Help

- 1 X
Qe searah [0 |

BEdS 0 |

1TH B0

<hoVew S er

Peds Fles Semkes 4 -] anlisy IEED | s nantase] [cr X e] % [0 | (tvn
;’ﬂ\'ﬁ-‘?ﬂ“ Coreson: Darlmatese ‘lQBEQE BEH-B-9%F%5 1?\‘:":|E|E|ii|§=|
g STIRCT * FRCH nstrics LINIT L100; 1
.1 Frsi e
L dezoapatans dee gt
¥ dazrnpatans iz
T mae
EW SEECT * FAOK mzhizs L. =

i %}‘:’-’“‘"‘ AUNER 2 homes 0 Fetoedhons 2 et s
Ik 21 Foadies weria Welizs H
B e dritoses e A
] pbedety heahas 55 sngle T
a \izh Szndoes

; Senwrs

i ¥

e anget |

Ll
it X -

Ezecuted successfully in 0,016 s,
Feiching resultset took [s,

uing 1, columm 1

Eezcotion finished after 0,085 5, no ervars occarred,

SOL2mansten 5O 3ewariin ¥ L4 epalior X SOLTmecli X SQLGEsiten ¥ 507 ewarion % SOLE et ¥ 509ewari; ¥

{04 Erent(s) amaraz sizcesshly,

(0 Hihzns 02 82 - 3K
il Eit Vi Kaigat Scuee Refater R Dehag Frie Team Tow's Windaw el & secrs) |
Mgs Fles Senkes % - ..g]l';sqm[nmmm :@;1 % gLy % (S0 x|_|';sm [IEED IEES! #| s ez {ivo
%um‘;‘_“”"-‘* | covetin: Dot JBEFOT BE-N-URFEG/Fe%[dslenlt s
x -
T g setiien 1 lEE:ICI‘ * FROM ussrtyps SIMIT 100: 1
i f Caliaries_Tuestte)
21 dssopztans
2 Py
L desoopatens des gt
B L gtz qusions
T move
T
SELELT M s L. %
B8 The s BENEE 2 W[1 esedions: 0 Neithg s
H pledstyibabot ik || pepp ey z
! \izh Sz e =
Senwrs "
gk Meven Reposioizs
LTS v
¢ 3
e anget | =
Ll
it X -
<hoVew haianex SQL2emnaton SO 3ewaion ¥ SOL4ewatr ¥ SCLEmEclon % SJLGEsniten ¥ SO0Tewain % SOUEewalyr ¥ SOLY mEcln X SQUI0swanin % SO ewaren % SILU st X
A
Execnted sucesssfully in 0 s,
Feiching resultset took [s,
uing 1, columm 1
Eezcotion finished after 0,047 5, no ervars occarred,
¥
o e

60

(0 teshezns 0 2 - 2

file Edit \ew Mavigate Soure Refacter Rur Debog Frofile Team Tooks Window Help 6 serdjcr+)
= | an! 3 odLogre e ¥ 3 o hege i [501 P RIEED * Bs % [d503] | 5. sentemse] [AL
A Conretion; Damlwatess ‘lQE’EQE EE-E‘@&EQ ff‘b%lﬂﬁhiﬁd
1| SILECT * FROM designpatterns description LIMIT 100 1
H
SEECT *FiOk sesipilte.. =
EIIIIIQNmr{u&:.NIJ_ImeR:ﬁ:D ——
+ DescrPaneespinid Daer e Desiriplin_Die grFaizmid 5
B Drer driatises A
2 ety eabo 1575k
! \izh Szndoes
; Senwrs ¥
3 3
e anget | =
Ll
Oalpe -
<ho Vew b ex SOL2snaton ¥ 50 3ewariin ¥ S04 epaliyr X SOLTmecl X SQLGEsen ¢ (LT eEobn X
A
Ezecuted successfully in 0,016 s,
Feiching resultset took [s,
uing 1, columm 1
Execution fiished after 0.1 s, no ecrors occurred.
¥
{04 Erent(s) amaraz sizcesshly, Il [

61

(0 teesns 0 B2 - I
File Erit Wiew Mavigate: Soure Refacter Rur Dtog Frofi Team Toals Window Help Qe searah [0 |
REAYYE TR B0

MfEls s Senees - | o it Reskfenl % E pLognnlnge # E RUnpsercimlgae X 5002 % [{ sl :@ 5L P - % a0 P {70

| B libozs ’

#[§ wmats

Xy

3] barbatzbas

FE dem
E (I Tohis

H cERerise wags

;j Ceteooriestizigniid

L desoopatems des gt
L desorpatans quesions v
i H

(nredtion: Daneacese

| |BEFOTBE-B-URFEL Foh|aslen(Ea

1 lEE:ICI‘ + FROH designpatterns LINIT 1007
H

SEECT * FADN esyiplt.

AENEE 2 Neomos [0 1 Fecvdhon: 8

ety S

Teid - Ve gelor xl -

DezrPare CEREE T
L aasyert Faoury
2Fy

SRy

<5zt
SAmmps

Py

<hoVew S er

$

1

H

3

]

H

i

7 Tt
i Ukizpe

[aCyrjeste

n 10 Denarete

i 11 Famil:

2 12 Pyt

1 13Tarphz Vetho:
18 18 Wl

1 18 00zn o Responz ity

15 16 Cheerver

12 13 Drafane:

Catzoorfd

> | an

Outpus &

SQL2emnaten 53wz % SOL4ewtor ¥ SOLS szcim ¥ 30L6 et X
Exacnted sucesssfully in 0,015 &,
Feiching resultset took [s,

uing 1, columm 1

Eezcotion finished after 0,093 5, no ervars occarred,

{04 Erent(s) amaraz sizcesshly,

62

0 esbezns 06 12

file Edit \ew Mavigate Soure Refacter Rur Debog Frofile Team Tooks Window Help

- 1 X
8 sk o |

{04 Erent(s) amaraz sizcesshly,

| b-B-B-
BEES DO C__H1H) B0
o T — = | anl 3 ot heefil [P il ¢[34 o ¥4 RILE" IEEE ELETE ¥ s 1| tivo
e A et e Y (86207 BE-B-95F35/fe5[aulon(ta
Jaalh | c E -
20 piwes 1| SZLECT * FROM categories questions LIMIT 100; 1
3] barbatzbas B
HE dem
E L Taes
=1 gz wehs
] etz
1 Celeoury st
1T et
i W
#_1 nduns
%J Fareige sz
L e
SEECT * FAOK calnores . &
EENEE'2 Nb’.r:ua:.wl]_lfik\mﬂ:ua:lz ——
+ e Gty Coestiar_Celipt 5
1 LG e dess mare cooerved abau e way e abjects e cestud? Ia
H 202 Teking 3"z qame s £n examp g, cous thiz prrblem iguzne daals of wrek czn bale 1
3 303 Do pau reas 12 2ovfigu'e & system vith ajecs tak very w ooy ir svuctane anz furcona.. 1
= ¥ 40 Does g anonjec g e e operohe ncnenge e ok of your o 1
t P s 05 W s cese e rees conzmed sbo: b e najec is compasze of grogp of shrede £ H
Tefmii-bas lze -6 06 Mook you bire the oajzcs, imadecee or img it pls fesgze ., H
? J0R W 1s dess Rz oy relzbonzps bevieen it ard ey b £esses? 2
] 308 W1 15 dasses b Corcemez wifh Dheracion, regparshiy end comurizzion bevesn. 3
] 50 e e st of o eek e dhced amar d e s 3
0 |E| 10010, Coes yuur dea flow o preczssst 3
il L LL Coas the ajacs barainur sroulr be razresemac cyramica b kl
bt} 12012, Woulz yaur chass czotmo witrer the ojecis bo be dzpendent o ircezrdani? 3
L
Ditpus =
<hoVew S er SQL2smnaton 5. 3ewarion ¥ SOL4 eeatir ¥ 505 e ¥
A
Ezecuted successfully in 0,016 s,
Feiching resultset took [s,
Line 1, columr 1
Exzcution finished after 0,118 5, no errors ocourred,
¥
| 1 |

63

(0 teshezns 0 2 - 2

file Edit \ew Mavigate Soure Refacter Rur Debog Frofie Team Took Windaw Help 6 serdjcr+)
gy les Senkes -| e T oa Famnl ¢ 7 e bometil 4 E P Sesitaml 4[4 ja ¥ RIEE] EEE % [HsquaT « {ivo
Rg[%“:“é * | covetin: Dot JBEFOTBE-N-URFEG/Fe%[dslenlt s
1] . . T
3] riws 1| SZLECT * FACM categories descripticn LIMIT 100; 1
3] barbatzbas H
421 Ry e
T ateguies
L et et
1 g rtions
¥ desmprans SEET " FRON SRS X
P) .
il PTTTT I LT e, Yoy s
+ 0 CamgenDessipiend Zearrizlon Ceatrinten_Canegeryl E
L]
¥
Ll
it X -
<ho Vew b ex 50L2mnsten ¥ 50 3ewarizn ¢ S0L4 s ¥
A
Erecuted successfully in 0,022 s,
Feiching resultset took [s,
uing 1, columm 1
Eezcotion finished after 0,118 5, no ervars occarred,
¥
o |

64

(0 teshezns 0 2 - 2

file Edit \ew Mavigate Soure Refacter Rur Debog Frofie Team Took Windaw Help 6 serdjcr+)
MfEls s Senees -| e 3 Fremetizlzeze 4 pNUmbn] % B pNLamecm x|§ R Rzcikfen % E PLognConalereis % E FMUegsrcunimlcjae % (55000 ¥ s 1| {70
Rg[%“:‘:*é | ot Dlatse JBEFOT BE-H-URFEG/Fo%[dulenlt s
1] .
3] riws 1) SILECT * FRCM categories LIMIT 100: 1
3] barbatzbas H | 1
21 Ry e
I s
CH L e sz
L categarias Tustinns
¥ desmprans SELET * SROM celiries .. X
P) .
il T T T T L L T, Yoy s
£ g Celearydan: E
1 < Cheslonal A
? Lt
3 izt
¥
Ll
it X -
<ho Vew b ex 5002 mauten & SCL3 xEtion X
A
Exacnted sucesssfully in 0,016 s,
Feiching resultset took [s,
uing 1, columm 1
Execution fiished after 0.1 s, no ecrors occurred.
¥
B |

65

(0 teshezns 0 2 - 2

file Edit \ew Mavigate Soure Refacter Rur Debog Frofie Team Took Windaw Help 8 sk o
Pty les ks - - 4 Fotpestunnslrae % E POametoinliua %[5 S0 fenand 3 A refn % & R Reakbrl 2 s #[d ddeae |8 5L Sy (R
ot A o e /36202 BE-B- ASF35/F e %laglonlsa
1] - - -
2 o 1| SZLECT * FBOM cesgorizs wedghts LIMIT 100;]
3] barbatzbas H
) Ry e
T teguies
& Lt sestripien
11 ot s
f dzrpaats SEECT * FAON fazqires v
T des i =
= |y 2 s 0 Faens 2 28
B fﬂ;mm‘kyﬁi Ellégfﬂ,bﬂlﬂi 'M!l'd;k Ih'ﬂﬁgk E
1 i 1] s
2 1 i E] 55
3] i k] 1
¥l 1 4 5 8
5 i E] El
|6] E i n
7 ! 7 5 B
i i i k] I
] 1 : 5 [
n n i m n
I I 1 55]
I i H] 5
<hoVew haianex
Ll
o |

66

(0 teesns 0 B2 - I
file Edit \ew Mavigate Soure Refacter Rur Debog Frofile Team Tooks Window Help Qe searah [0 I
el LR — o R

-| e 3 roasegzutoniiie i | 59,2 pendemsee] #0500 ELET « [F s8] | 596 encemsee] [Fjsac7 ELET) ¥ tivo

BESlTT
B L deerrpstans desT gl

(nredtion: Daneacese

| |BEFOTBE-B-URFEL|Foh|aslen/Ea

1 lEE:ICI‘ * TROM designpatterns_questions LIAIT 100
H

SEECT * FAOK cesiyipalte, =

BENEE S Mo 10 Feled s 0 e
+ 0 DesrPaneriuasicnd e Guaizn_DesiyPatero[2 5
B e dritoses "
2 ety eabo 1575k
) b Sendoes
; Senwrs ¥
¢)
e anget | =
Ll
Datps € -
<hoVew haianex SQL2Emnaton SO 3ewaricn % SL4ewatr ¥ SCLTmEclo % SLGesuiten ¥ 5Q0Tewanz % SQLA s ¥
A
Erecuted successfully in 0,015 s,
Feiching resultset took [s,
uing 1, columm 1
Eezcotion finished after 0,084 5, no ervars occarred,
¥
o e

67

