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INTRODUCTION & MOTIVATION
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• Too much sugar in the blood, can cause 
damage throughout the body, including the 
eyes [1].

• One third of people suffering from Diabetes 
Mellitus are expected to also be diagnosed with 
Diabetic Retinopathy [2].

• Diabetic Retinopathy is a retinal disease that is 
caused by too much sugar in the blood, over an 
extensive period of time.

[1] “Diabetic Retinopathy.” Mayo Clinic, Mayo Foundation for Medical Education and 
Research, 30 May 2018, https://www.mayoclinic.org/diseases-conditions/diabetic-
retinopathy/symptoms-causes/syc-20371611. Accessed 8 Oct. 2019. 

[2]- Lee, Ryan, Tien Y. Wong, and Charumathi Sabanayagam. 
"Epidemiology of diabetic retinopathy, diabetic macular edema and 
related vision loss." Eye and vision 2.1 (2015): 17.



SUPPORTIVE DOCUMENT
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CHALLENGES

 Diabetic Retinopathy can eventually evolve 
and lead to more severe complications, 
such as total blindness and/or Glaucoma.

Manual Classification of (DR) is not always
accurate.

 Offer a usable and reliable assistive system 
to doctors. - Eye Affected By Glaucoma
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PROBLEM STATMENT

 Automatically detecting the presence of Diabetic Retinopathy and
Classifying the different Stages of the disease in the patient’s eye.

 We aim to minimize and reduce the inaccurate diagnosis of (DR), 
and increase the classification accuracy rate among the four

different stages of the disease.
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RELATED WORK
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Paper No. of 
Images Used

Classification 
classes Classifier Accuracy Sensitivity Specificity

Bhattacharjee et al.[3] 13,402 5 Random Forest 76.50% 77.20% 93.30%

Kumar et al. [4] 89 2 SVM - 96.00% 92.00%

Cisneros et al. [5] 130 2 SVM 92.00% 87.30% 84.60%

Tjandrasa et al. [6] 149 2 SVM (Soft Margin) 90.54% - -

Carrera et al. [7] 400 4 SVM 85.00% 95.00% -

Sangwan [8] 96 3 SVM 92.60% - -

Junjun et al. [9] 35,126 5 ResNet 78.40% - -

Jain et al. [10] 35,126 5 VGG16, VGG19, Inception V3 76.90% 43.10% -

Kwasigroch et al.[11] 37,000 5 VGG-D 81.70% - -

kajan et al.[12] 49,272 5 ResNet50 92.64% (Yes/No)
70.29% (Stages) - -

Suriyal et al. [13] 16,798 2 MobileNets 73.30% - -

Harangi et al. [14] 552 5 CNN 83.35% 64.58% 88.00%

Khan et al.[15] 1,200 5 5 Layered CNN Model 98.15% 98.94% 97.87%

Zeng et al. [16] 35,126 5 Inception V3 - 82.20% 70.70%

Carson et al.[17] 36,200 5 CNN 57.2% -
74.5% - -



DATASET
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 The Dataset we intend to use in our project is provided by a Kaggle competition 
called “EyePacs”[18].

 In total, there are 88,702 images of left and right eyes.

 The images are labeled in five stages: Normal (0), Mild (1), Moderate (2), 
Severe (3) and Proliferative DR (4).

[18] “Diabetic    retinopathy    (resized),” May    2019.    [Online].    Available: https://www.kaggle.com/tanlikesmath/diabetic-retinopathy-
resized.csv
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 Dataset splitting :

DATASET EXPERIMENTS 1/3

0 0 3 1 4 1 2 2 2 0 2 4 … 1 3 2 3 1 0 3 1 3 0 2 2

Training

Testing

0 0 0 0 0 0 0 0 0 1 1 1 … 2 2 2 2 3 3 3 3 4 4 4 4

0 0 0 0 0 1 1 1 1 1 2 2 … 2 2 3 3 3 3 3 4 4 4 4 4

70/30 Random

70/30 Per Class

70/30 Per Class Equally
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 Dataset Filtering :

DATASET EXPERIMENTS 2/3

Around 245 images of the 
dataset was corrupted and 
might cause distraction to 
the model while training.



DATASET EXPERIMENTS 3/3
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CNN MODEL EXPERIMENTS 1/3
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CNN MODEL EXPERIMENTS 2/3
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CNN MODEL EXPERIMENTS 3/3
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 Overfitting :

We included dropout layers
in our model and made sure 
of applying generalization to 

avoid overfitting.



SYSTEM PARAMETERS
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SYSTEM OVERVIEW
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PREPROCESSING TECHNIQUES
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 All input images are resized to the model’s input size (224x224).

Dataset

1536 x 1024 224 x 224



SAMPLING TECHNIQUES

18

 Crop & Resize

1536 x 1024384 x 256

Maintain the images’ aspect ratio 
to avoid any data loss.

 Enable us to increase the original 
dataset size.

 Had the best performance 
compared to the other sampling 
techniques.



DATASET USAGE
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 Original Images Used : 41,099 Images (46.3% of Original Dataset).

 Total Input Images Used : 88,700 Images.

 Data Split : 70% Training (12,418 Images per Class) – 30% Testing (5,322 Images per Class).

Original 
Images

Original Images 
(After Filtration)

Input Images
Original 

Images Used
Augmented 

Images
Images 
Used

Class 0 (No DR) 65,343 65,167 17,740 0 17,740
Class 1 (Mild) 6,205 6,190 6,205 11,535 17,740

Class 2 (Moderate) 13,153 13,116 13,153 4,587 17,740
Class 3 (Severe) 2,087 2,083 2,087 15,653 17,740

Class 4 (Proliferative) 1,914 1,901 1,914 15,826 17,740
Total 88,702 88,457 41,099 47,601 88,700
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RESULTS 1/3
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RESULTS 2/3

 DR Detection Accuracy : 82.73 %.

 Sensitivity : 81.12 %.

 Specificity : 89.16 %.

Predicted Labels

No DR DR

Tr
ue

 L
ab

el
s

No DR 4,745 577

DR 4,019 17,269
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RESULTS 3/3

Overall Accuracy = 84.16 %

Predicted Labels
Class 0 Class 1 Class 2 Class 3 Class 4

Tr
ue

 L
ab

el
s

Class 0 4,745 1 518 3 55

Class 1 1,624 2,905 230 426 137

Class 2 2,213 670 1,578 544 317

Class 3 119 605 370 3,278 950

Class 4 63 157 211 1,322 3,569

 Class 0 : 82.73 %

 Class 1 : 85.53 %

 Class 2 : 80.94 %

 Class 3 : 83.69 %

 Class 4 : 87.93 %

Accuracy Per Class
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FINAL SYSTEM EVALUATION
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FUTURE WORK
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 Trying different techniques or models to
improve the system’s performance.

 In addition to using real data to prove the
system’s applicability and measure its
performance.



COMPETITIONS & CONTRIBUTIONS

• DELL (EMC) – Shortlisted for 
the final stage of the Dell 
Technologies Envision the 
Future Competition.

• ICSIE 2020 – Notification of 
Acceptance, and paper will be 
included and published in the 
upcoming conference.
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Doctor DEMO
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Patient DEMO
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30

Admin DEMO
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THANK YOU
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ANY QUESTIONS?
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Appendix
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Take an input 
image (Fundus 

Images) from the 
patient

The system starts 
classifying the 

input image and 
recognizing its 

stage.

The system will 
use the image and 
doctor’s feedback, 
to Re-Train itself 
and  improve its 

classification 
accuracy by time.

The doctor will 
provide his/her 
feedback on the 
system results.

SYSTEM
CYCLE
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