

Automatic Classification Of The Preliminary Diabetic Retinopathy Stages

Presented By : Mahmoud Hazem, Mohamed Alaa, Omar Khaled, Youssef Talaat

Supervised By : Dr. Alaa hamdy, ENG. Yomna Ibrahim

OUTLINE

- 1. Introduction & Motivation Slide 3.
- 2. Supportive Document Slide 4.
- **3**. Challenges Slides 5.
- 4. Problem Statement Slides 6.
- 5. Related Work Slides 7.
- 6. Dataset Slide 8.
- 7. Dataset Experiments Slide 9-11.
- 8. CNN Model Experiments Slide 12-14.
- 9. System Parameters 15.
- **10**. System Overview Slides 16.

- **11**. Preprocessing Techniques Slide 17.
- **12**. Sampling Techniques Slide 18.
- 13. Dataset Usage Slide 19.
- **14**. Results Slide 20-22.
- **15**. System Evaluation 23.
- **16**. Future Work Slide 24.
- **17**. Competitions & Contributions Slide 25.
- **18**. Demo Slides 26-31.
- **19**. Appendix Slide 34-38.

INTRODUCTION & MOTIVATION

- Too much sugar in the blood, can cause damage throughout the body, including the eyes [1].
- One third of people suffering from Diabetes Mellitus are expected to also be diagnosed with Diabetic Retinopathy [2].
- Diabetic Retinopathy is a retinal disease that is caused by too much sugar in the blood, over an extensive period of time.

[1] "Diabetic Retinopathy." Mayo Clinic, Mayo Foundation for Medical Education and Research, 30 May 2018, https://www.mayoclinic.org/diseases-conditions/diabeticretinopathy/symptoms-causes/syc-20371611. Accessed 8 Oct. 2019.

[2]- Lee, Ryan, Tien Y. Wong, and Charumathi Sabanayagam."Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss." Eye and vision 2.1 (2015): 17.

SUPPORTIVE DOCUMENT

Re: Diabetic Retinopathy project

Dina Hossam <drdhossam@yahoo.com> 10/2/2019 9:45 PM

To: Mohamed Mohamed Alaa Eldine Hanafi Mohamed

Dear Mohamed

It is my pleasure supervising your valuable project and i am willing to provide you with any information needed about Diabetic Retinopathy, which is considered one of the most prevalent preventable eye diseases in Egypt and the middle east. The success of setting a comprehensive screening and management program for Diabetic Retinopathy in Egypt will definitely have an extremely positive impact on the rates of blindness among the Egyptian population.

2

Good luck in your project and best wishes.

Dr. Dina Hossam Hassanein, MD, FRCS Assistant Professor of Ophthalmology Cairo University

CHALLENGES

 Diabetic Retinopathy can eventually evolve and lead to more severe complications, such as total blindness and/or Glaucoma.

Manual Classification of (DR) is not always accurate.

 Offer a usable and reliable assistive system to doctors.

- Eye Affected By Glaucoma

PROBLEM STATMENT

 Automatically detecting the presence of Diabetic Retinopathy and Classifying the different Stages of the disease in the patient's eye.

 We aim to minimize and reduce the inaccurate diagnosis of (DR), and increase the classification accuracy rate among the four different stages of the disease.

RELATED WORK

Paper	No. of Images Used	Classification classes	Classifier	Accuracy	Sensitivity	Specificity
Bhattacharjee et al.[3]	13,402	5	Random Forest	76.50%	77.20%	93.30%
Kumar et al. [4]	89	2	SVM	-	96.00%	92.00%
Cisneros et al. [5]	130	2	SVM	92.00%	87.30%	84.60%
Tjandrasa et al. [6]	149	2	SVM (Soft Margin)	90.54%	-	-
Carrera et al. [7]	400	4	SVM	85.00%	95.00%	-
Sangwan [8]	96	3	SVM	92.60%	-	-
Junjun et al. [9]	35,126	5	ResNet	78.40%	-	-
Jain et al. [10]	35,126	5	VGG16, VGG19, Inception V3	76.90%	43.10%	-
Kwasigroch et al.[11]	37,000	5	VGG-D	81.70%	-	-
kajan et al.[12]	49,272	5	ResNet50	92.64% (Yes/No) 70.29% (Stages)	-	-
Suriyal et al. [13]	16,798	2	MobileNets	73.30%	-	-
Harangi et al. [14]	552	5	CNN	83.35%	64.58%	88.00%
Khan et al.[15]	1,200	5	5 Layered CNN Model	98.15%	98.94%	97.87%
Zeng et al. [16]	35,126	5	Inception V3	-	82.20%	70.70%
Carson et al.[17]	36,200	5	CNN	57.2% - 74.5%	-	-

DATASET

- The Dataset we intend to use in our project is provided by a Kaggle competition called "EyePacs" [18].
- In total, there are 88,702 images of left and right eyes.
- The images are labeled in five stages: Normal (0), Mild (1), Moderate (2), Severe (3) and Proliferative DR (4).

Figure 1. Some samples in the EyePACS dataset

[18] "Diabetic retinopathy (resized)," May 2019. [Online]. Available: https://www.kaggle.com/tanlikesmath/diabetic-retinopathy- 8 resized.csv

DATASET EXPERIMENTS 1/3

DATASET EXPERIMENTS 2/3

Dataset Filtering :

Around 245 images of the dataset was corrupted and might cause distraction to the model while training.

DATASET EXPERIMENTS 3/3

Preprocessing Techniques

Images Distribution

Sampling Techniques

Images Dimensions (Accuracy)

Images Dimensions (Time Taken)

CNN MODEL EXPERIMENTS 1/3

Base Model

Batch Size

Base Models Weights

Base Model Freezing Tech.

CNN MODEL EXPERIMENTS 2/3

Train / Test Percentage

Epochs (Accuracy)

Optimizers

CNN MODEL EXPERIMENTS 3/3

• Overfitting :

We included dropout layers in our model and made sure of applying generalization to avoid overfitting.

Standard Neural Net

After applying dropout

SYSTEM PARAMETERS

SYSTEM OVERVIEW

PREPROCESSING TECHNIQUES

• All input images are resized to the model's input size (224x224).

1536 x 1024

224 x 224

SAMPLING TECHNIQUES

Crop & Resize

 Maintain the images' aspect ratio to avoid any data loss.

 Enable us to increase the original dataset size.

 Had the best performance compared to the other sampling techniques.

DATASET USAGE

	Original	Original Images	Input Images				
	Images	(After Filtration)	Original	Augmented	Images		
		(,	Images Used	Images	Used		
Class 0 (No DR)	65,343	65,167	17,740	0	17,740		
Class 1 (Mild)	6,205	6,190	6,205	11,535	17,740		
Class 2 (Moderate)	13,153	13,116	13,153	4,587	17,740		
Class 3 (Severe)	2,087	2,083	2,087	15,653	17,740		
Class 4 (Proliferative)	1,914	1,901	1,914	15,826	17,740		
Total	88,702	88,457	41,099	47,601	88,700		

- Original Images Used : 41,099 Images (46.3% of Original Dataset).
- Total Input Images Used : 88,700 Images.
- Data Split : 70% Training (12,418 Images per Class) 30% Testing (5,322 Images per Class).

RESULTS 1/3

System Architecture

RESULTS 2/3

- DR Detection Accuracy : 82.73 %.
- Sensitivity : **81.12 %**.
- Specificity : **89.16 %**.

		Predict	ed Labels
		No DR	DR
abels.	No DR	4,745	577
True L	DR	4,019	17,269

RESULTS 3/3

Accuracy Per Class

- Class 0 : 82.73 %
- Class 1 : 85.53 %
- Class 2 : 80.94 %
- Class 3 : 83.69 %
- Class 4 : 87.93 %

			Pred	licted La	bels	
		Class 0	Class 1	Class 2	Class 3	Class 4
	Class 0	4,745	1	518	3	55
bels	Class 1	1,624	2,905	230	426	137
e Lal	Class 2	2,213	670	1,578	544	317
True	Class 3	119	605	370	3,278	950
	Class 4	63	157	211	1,322	3,569

Overall Accuracy = 84.16 %

FINAL SYSTEM EVALUATION

88,700 90,000 80,000 70,000 60,000 49,272 50,000 37,000 36,200 35,126 35,126 40,000 30,000 20,000 10,000 Jainet al. 101 Lanet al. 111 Ar a 0 Juniunet al. 191 Proposed System kajanetal.121 carsonetal.111

Number of Images

Accuracy

FUTURE WORK

- Trying different techniques or models to improve the system's performance.
- In addition to using real data to prove the system's applicability and measure its performance.

COMPETITIONS & CONTRIBUTIONS

 DELL (EMC) – Shortlisted for the final stage of the Dell Technologies Envision the Future Competition.

Envision The Future

Dell Technologies Graduation Project Competition for Turkey, Middle East, and Africa

 ICSIE 2020 – Notification of Acceptance, and paper will be included and published in the upcoming conference.

Doctor DEMO

☆

HEALTHCARE

111-222-333

88 Route West 21th Street, Suite 721 New York NY 10016

Login To Your Portal

Helping to improve quality

Login To Portal

Username		Password
Username		Password
	Please fill out this field.	

© Copyright ©2020 All rights reserved | This template is made with ♥ by Colorlib Demo Images: Unsplash , Pexels

Patient DEMO

☆

HEALTHCARE

111-222-333 99-222-333

88 Route West 21th Street, Suite 721 New York NY 10016

Login To Your Portal

Helping to improve quality

Login To Portal

Admin DEMO

☆

HEALTHCARE

111-222-333

88 Route West 21th Street, Suite 721 New York NY 10016

Login To Your Portal

Helping to improve quality

Login To Portal

Username	Password
Username	Password
Log	in

THANK YOU

ANY QUESTIONS?

APPENDIX

- 3. December "Diabetes figures," (2019,facts and 13).©2020 International Di-abetes Federation. https://idf.org/aboutdiabetes/what-is-diabetes/factsfigures.html.[Online]. Available: https://idf.org/aboutdiabetes/what-is-diabetes/factsfigures.html.
- 4. I. Bhattacharjee and T. Mahmud, "Diabetic retinopathy classification from retinalimages using machine learning approaches," Ph.D. dissertation, 02 2020.
- S. Kumar and B. Kumar, "Diabetic retinopathy detection by extracting area and num-ber of microaneurysm from colour fundus image," in2018 5th International Conferenceon Signal Processing and Integrated Networks (SPIN). IEEE, 2018, pp. 359–364.
- F. Cisneros-Guzm´an, S. Tovar-Arriaga, C. Pedraza, and A. Gonz´alez-Gutierrez, "Clas-sification of diabetic retinopathy based on hard exudates patterns, using images pro-cessing and svm," in2019 IEEE Colombian Conference on Applications in Computa-tional Intelligence (ColCACI). IEEE, 2019, pp. 1–5.

- H. Tjandrasa, R. E. Putra, A. Y. Wijaya, and I. Arieshanti, "Classification of non-proliferative diabetic retinopathy based on hard exudates using soft margin svm," in2013 IEEE International Conference on Control System, Computing and Engineering.IEEE, 2013, pp. 376–380.
- E. V. Carrera, A. Gonz´alez, and R. Carrera, "Automated detection of diabetic retinopa-thy using svm," in2017 IEEE XXIV International Conference on Electronics, Electri-cal Engineering and Computing (INTERCON). IEEE, 2017, pp. 1–4.
- S. Sangwan, V. Sharma, and M. Kakkar, "Identification of different stages of diabeticretinopathy," in2015 International Conference on Computer and Computational Sci-ences (ICCCS). IEEE, 2015, pp. 232–237.
- P. Junjun, Y. Zhifan, S. Dong, and Q. Hong, "Diabetic retinopathy detection based ondeep convolutional neural networks for localization of discriminative regions," in2018International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2018, pp. 46–52.

APPENDIX

- A. Jain, A. Jalui, J. Jasani, Y. Lahoti, and R. Karani, "Deep learning for detection andseverity classification of diabetic retinopathy," in2019 1st International Conference onInnovations in Information and Communication Technology (ICIICT). IEEE, 2019, pp. 1–6.
- A. Kwasigroch, B. Jarzembinski, and M. Grochowski, "Deep cnn based decision sup-port system for detection and assessing the stage of diabetic retinopathy," in2018International Interdisciplinary PhD Workshop (IIPhDW). IEEE, 2018, pp. 111–116.
- S. Kajan, J. Goga, K. Lacko, and J. Pavlovi^{*}cov[']a, "Detection of diabetic retinopathyusing pretrained deep neural networks," in2020 Cybernetics & Informatics (K&I).IEEE, pp. 1–5.
- 14. S. Suriyal, C. Druzgalski, and K. Gautam, "Mobile assisted diabetic retinopathy de-tection using deep neural network," in2018 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE). IEEE, 2018, pp.1–4.

- B. Harangi, J. Toth, and A. Hajdu, "Fusion of deep convolutional neural networks formicroaneurysm detection in color fundus images," in2018 40th Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,2018, pp. 3705–3708.
- S. H. Khan, Z. Abbas, S. D. Rizviet al., "Classification of diabetic retinopathy imagesbased on customised cnn architecture," in2019 Amity International Conference onArtificial Intelligence (AICAI). IEEE, 2019, pp. 244–248.
- X. Zeng, H. Chen, Y. Luo, and W. Ye, "Automated diabetic retinopathy detectionbased on binocular siamese-like convolutional neural network," IEEE Access, vol. 7,pp. 30 744–30 753, 2019.

Appendix

							<u>5 Cl</u>	ass N	Mode	<u>el</u>					
	0	1	2	3	4	Sum	ТР	TN	FP	FN	Accuracy	Sensitivity (Recall)	Specificity	Precision	F-Score
0	4745	1	518	3	55	5322	4745	17269	4019	577	82.73%	89.16%	81.12%	54.14%	67.37%
1	1624	2905	230	426	137	5322	2905	19855	1433	2417	85.53%	54.58%	93.27%	66.97%	60.14%
2	2213	670	1578	544	317	5322	1578	19959	1329	3744	80.94%	29.65%	93.76%	54.28%	38.35%
3	119	605	370	3278	950	5322	3278	18993	2295	2044	83.69%	61.59%	89.22%	58.82%	60.17%
4	63	157	211	1322	3569	5322	3569	19829	1459	1753	87.93%	67.06%	93.15%	70.98%	68.97%
						Sum	16075	95905	10535	10535					
						Calculated					84.16%	60.41%	90.10%	60.41%	60.41%

	<u>5 Class Model</u>											
	0	1	Sum	ТР	ΤN	FP	FN	Accuracy	Sensitivity (Recall)	Specificity	Precision	F-Score
0	4745	577	5322	17260	4745	677	4010	00 720/	01 100/	90.160/	06 77%	00 200/
1	4019	17269	21288	17209	4745	5//	4019	82.73%	81.12%	89.16%	96.77%	88.26%

APPENDIX

• Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

• Sensitivity =
$$\frac{TP}{TP + FN}$$

• Specificity =
$$\frac{TN}{TN + FP}$$

37

Appendix

The system will use the image and doctor's feedback, to Re-Train itself and improve its classification accuracy by time.

The doctor will provide his/her feedback on the system results.

Take an input image (Fundus Images) from the patient

The system starts classifying the input image and recognizing its stage.