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INTRODUCTION & MOTIVATION

* Too much sugar in the blood, can cause
damage throughout the body, including the
eyes [1] I’Supzriurﬂectus Aoy j
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* Diabetic Retinopathy is a retinal disease that is
caused by too much sugar in the blood, over an
extensive period of time.

[1] “Diabetic Retinopathy.” Mayo Clinic, Mayo Foundation for Medical Education and [2]- Lee, Ryan, Tien Y. Wong, and Charumathi Sabanayagam.
Research, 30 May 2018, https://www.mayoclinic.org/diseases-conditions /diabetic- "Epidemiology of diabetic retinopathy, diabetic macular edema and
retinopathy /symptoms-causes/syc-20371611. Accessed 8 Oct. 2019. related vision loss." Eye and vision 2.1 (2015): 17. 3



| SUPPORTIVE DOCUMENT

Re: Diabetic Retinopathy project

@ Dina Hossam <drdhossam@yahoo.com> ]
10/2/2019 9:45 PM

To: Mohamed Mohamed Alaa Eldine Hanafi Mohamed

Dear Mohamed

It is my pleasure supervising your valuable project and i am willing to provide you with any
information needed about Diabetic Retinopathy, which is considered one of the most
prevalent preventable eye diseases in Egypt and the middle east. The success of setting a
comprehensive screening and management program for Diabetic Retinopathy in Egypt will
definitely have an extremely positive impact on the rates of blindness among the Egyptian
population.

Good luck in your project and best wishes,

Dr. Dina Hossam Hassanein, MD, FRCS
Assistant Professor of Ophthalmology
Cairo University




| CHALLENGES

= Diabetic Retinopathy can eventually evolve
and lead to more severe complications,
such as total blindness and/or Glaucoma.

= Manual Classification of (DR) is not always
accurate.

= Offer a usable and reliable assistive system
to doctors.
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I PROBLEM STATMENT

= Automatically detecting the presence of Diabetic Retinopathy and
Classifying the different Stages of the disease in the patient’s eye.

= We aim to minimize and reduce the inaccurate diagnosis of (DR),
and increase the classification accuracy rate among the four
different stages of the disease.
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| DATASET

= The Dataset we intend to use in our project is provided by a Kaggle competition
called “EyePacs”[18].

= |In total, there are 88,702 images of left and right eyes.

= The images are labeled in five stages: Normal (0), Mild (1), Moderate (2),
Severe (3) and Proliferative DR (4).

e I

Normal Mild Moderate Severe Proliferative

Figure 1. Some samples in the EyePACS dataset

[18] “Diabetic retinopathy (resized),” May 2019. [Online]. Available: https://www.kaggle.com/tanlikesmath/diabetic-retinopathy- 8
resized.csv



I DATASET EXPERIMENTS 1/3

= Dataset splitting : Testing
- I
70/30 Random olo|3|1]4a|1|2|2]|2]|0|2]4a|..[2|3|2]|3]|1]|0]|3]1|3|0]2]2
— _J

~

Training
— N N S N
70/30 Per Class olo|o|o|o|o|o|o|Oo|1|2|2]|..|2|2]2]2]|3|3|3|3|4|4]|4|4
P —— = S
— — — — —
70/30 Per Class Equally |o|ofo|o|o|1|1|21|2|2|2|2]..]2]2|3]|3|3|3|3|4|4a|4a|4]|4
—_ ) = T 7



I DATASET EXPERIMENTS 2/3

= Dataset Filtering :

Around 245 images of the
dataset was corrupted and
might cause distraction to
the model while training.
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| CNN MODEL EXPERIMENTS 1/3
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CNN MODEL EXPERIMENTS 2/3
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I CNN MODEL EXPERIMENTS 3/3

Overfitting :
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SYSTEM PARAMETERS
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SYSTEM OVERVIEW

2. Pre-Processing Stage
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| PREPROCESSING TECHNIQUES

= Allinput images are resized to the model’s input size (224x224).

' Dataset

17

1536 x 1024 224 x 224



| SAMPLING TECHNIQUES

= Crop & Resize

= Maintain the images’ aspect ratio
to avoid any data loss.

" Enable us to increase the original
dataset size.

* Had the best performance
compared to the other sampling
techniques.

1388 x 2684

18



| DATASET USAGE

Input Images

Original Original Images

Images (After Filtration) DIt
Images Used

Class 0 (No DR) 65,343 65,167 17,740
Class 1 (Mild) 6,205 6,190 6,205
Class 2 (Moderate) 13,153 13,116 13,153
Class 3 (Severe) 2,087 2,083 2,087
Class 4 (Proliferative) 1,914 1,901 1,914
Total 88,702 88,457 41,099

= Original Images Used : 41,099 Images (46.3% of Original Dataset).
= Total Input Images Used : 88,700 Images.

= Data Split : 70% Training (12,418 Images per Class) — 30% Testing (5,322 Images per Class).

0
11,535
4,587
15,653
15,826
47,601

Augmented Images
Images

Used
17,740
17,740
17,740
17,740
17,740
88,700



RESULTS 1/3
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| RESULTS 2/3

= DR Detection Accuracy : 82.73 %.
= Sensitivity : 81.12 %.

= Specificity : 89.16 %.

True Labels

No DR

DR

Predicted Labels

No DR DR
4,745 577
4,019 17,269
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RESULTS 3/3

Accuracy Per Class

" ClassO:
" Class1:
" Class2:
= Class 3:
" Class4:
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I FINAL SYSTEM EVALUATION
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| FUTURE WORK

= Trying different techniques or models to
improve the system’s performance.

= |n addition to using real data to prove the

system’s applicability and measure its
performance.

24



| COMPETITIONS & CONTRIBUTIONS

e DELL (EMC) — Shortlisted for
the final stage of the Dell
Technologies Envision the
Future Competition.

* |CSIE 2020 — Notification of
Acceptance, and paper will be
included and published in the
upcoming conference.

R

Envision The Future

Dell Technologies Graduation Project Competition for Turkey, Middle East, and Africa

ICSIE

X

2020
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Doctor DEMO




Healthcare Template

“— C @ localhost/DR

m-222-333 88 Route West 21th Street,

H EA I.TH 99-222-333 Suite 721 New York NY 10016

Login To Your Portal

Login To Portall

Username Password

Please fill out this field.

opyright ©2020 All rights reserved | This template is made with * by Cc

Demo Images:



Patient DEMO



Healthcare Template

&€ 3 @ @ localhost/D

111-222-333 88 Route West 21th Street,

H EA LTH 99-222-333 Suite 721 New York NY 10016

Login To Your Portal

Helping to improve quality

Login To Portal

Username Password

doctor
admin
patient
omar
seif

Damco

0 Al rights reserved | This template is made with ® by

Demo Images:




Admin DEMO



Healthcare Template

“— C @ localhost/DR

m-222-333 88 Route West 21th Street,

H EA I.TH 99-222-333 Suite 721 New York NY 10016

Login To Your Portal

Login To Portall

Username Password

opyright ©2020 All rights reserved | This template is made with * by Cc

Demo Images:



THANK YOU




ANY QUESTIONS?
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| Appendix

B2 W N = O

0 1 2 3 4 Sum TP
4745 1 518 3 55 5322 4745
1624 | 2905 230 426 137 [ 5322 2905
2213 670 | 1578 544 317 f 5322 1578
119 605 370 | 3278 950 5322 3278
63 157 211 1322 3569 5322 3569

Sum 16075
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(1] 1 Sum TP

0 4745 577 5322
1 4019 17269 21288

17269 4745
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577

FN Accuracy

4019 82.73%

Sensitivity

(Recall)

81.12%
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89.16%
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88.26%

6/7.37%
60.14%
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60.17%
68.97%

60.41%
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| APPENDIX

TP +TN
TP+TN+ FP+ FN

= Accuracy =

. TP
= Sensitivity = P
s TN
=  Specificity = pem
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| Appendix

The system will

use the image and
doctor’s feedback,
to Re-Train itself

and improve its
classification
accuracy by time.

The doctor will

rovide his/her
eedback on the
system results.

Take an input
image (Fundus

Images) from the
patient

SYSTEM

The system starts
_classifying the
input image and

recognizing its
stage.

9
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