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Abstract

Fish farm environment strongly affects fish behavior and health. An uncontrolled en-

vironment may cause fish mortality and severe losses in fish production that may affect

countries’ economies. The proposed system serves this field by analyzing fish farm envi-

ronment. Many challenges are faced such as lack of data-sets and research. Additionally,

fish behavior is hardly tracked due to fast fish movements, similar appearance, and high

density of fish farms. The automatic disease recognition process is also challenging due to

unclear water vision, noisy images, and the presence of objects other than fish in images.

The proposed system is composed of Raspberry pi hardware circuit which is connected to

sensors and camera. The sensors are responsible for examining water quality by measuring

water temperature and rate of pH, while the camera acquires video frames for tracking fish

movement by applying Kanade-Lucas-Tomasi (KLT) algorithm and detecting diseases by

applying Convolutional Neural Networks and segmentation techniques. These diseases are

Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich), and Columnaris. Finally, the

system sends a notification through an android or web application to inform users of any

improper farm conditions and any detected infections.
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Chapter 1

Introduction

1.1 Introduction

Fish farms have a great role in food security and livelihood and are a source of income

and social development in developing countries. Most of the eaten seafood is farmed. Pro-

duction of farmed fish makes up forty-four percent of total fish production [1]. Farmed fish

continues to grow faster than other major food production sectors. Annual growth declined

to a moderate 5.8 percent during the period 2001–2016 [2], although double-digit growth

still occurred in a small number of individual countries, particularly in Africa from 2006 to

2010 as shown in figure 1.1.

Figure 1.1: Average annual growth rate of fish farm production
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Huge loss of production in fish farms is occurring because of many reasons. Among

these causes, the disease is the most serious constraint that causes damage to the livelihood

of farmers, reduced incomes, and food insecurity. Like any living organism, fish suffers from

various diseases that cause their death. The annual loss of revenues because of the disease

reaches up to billions of dollars. Different types of fish diseases are shown in figure. 1.2.

Figure 1.2: Different type of fish diseases

Fish diseases spread quickly in fish farms, therefore, preventing and controlling fish

diseases is very important. Most of the available methods focus on classifying and detect-

ing fish disease outside of water because underwater classification show challenges such as

background noises, the presence of other water bodies in images, and image quality.

Analysis of fish behavior helps in the expectation of fish diseases. Tracking fish in the

video is an effective way to investigate fish behavior. However, there are many difficulties

in tracking which become greater in underwater environmental conditions. Fish tracking is

a challenging task due to the nature of the videos in which fish is tracked. Traditional ways

deal with videos in a controlled environment such as fish tanks with high lightening, fixed

objects in the water, and purity of water. However, our videos were taken in uncontrolled

earthen ponds in fish farms in which the vision is not clear, visual similarity between the

fish in the same farm, fast fish movements, and water cleanness, as shown in figure 1.3. Fish

farm videos also contain non-fish objects as algae. All these conditions affect the quality of

the videos taken.
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Figure 1.3: Earthen pond

The Internet of Things (IoT) is all of the things that are connected to the Internet. It is

the ability to transfer data over a network. The IoT architecture is based on a 3-layer system

that consists of a hardware layer, communication layer, and interface layer. IoT systems

require some way of communication between different endpoints. These endpoints can be

anything from IoT devices to applications, and eventually, the data needs to be stored

somewhere for further processing. The hardware devices that are used in the proposed

system are Raspberry pi 3 that is responsible to send data to the firebase database. This

will communicate with android or web applications that will read the data and display it

perfectly.

In this proposed system, deep learning is capable of analyzing fish farm environment

for detecting and tracking fish. The proposed system consists of three subsystems: the

hardware circuit, fish detection, and tracking, and finally the interface part which can be

an android or web application. The hardware part is composed of a Raspberry pi hardware

circuit which is connected to sensors and camera. The sensors are responsible for examining

water quality by measuring water temperature and rate of pH, while the camera acquires

video frames. Raspberry pi gets the sensors’ readings and captured videos to pass them to

the computer system. In Fish detection, convolutional Neural Networks and segmentation

techniques are applied to fish images taken from videos to detect three different types of fish

diseases. These diseases are Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich),

and Columnaris. The tracking was carried out by applying the Kanade-Lucas-Tomasi (KLT)

algorithm and fish velocity is then calculated for tracking fish behavior. Finally, the system
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sends a notification through an android application to inform users of any improper farm

conditions and any detected infections.

1.2 Background

This section provides the user with the required background. The introduced subsections

are fish diseases, analysis of different behaviors and ponds types.

1.2.1 Fish Diseases

Epizootic ulcerative syndrome (EUS) [3] is a disease caused by water mold which is

known as Aphanomyces invadans. EUS is also known as red spot disease (RSD). EUS causes

ugly red spots on infected fish skin, as shown in figure 1.4. These lesions can be expanded to

form ulcers. EUS infection occurs when motile spores of the fungi Aphanomyces invadans

in the water. More than 50 species of both farmed and wild fish, are susceptible to be

infected by EUS disease.

Figure 1.4: Fish infected with EUS disease

Ichthyophthirius (ICH) [4] is a large parasite that causes white spot disease that often

appears on the skin and fins of infected fish as shown in figure 1.5. The disease occurs when

any change happens in water temperature and the disease is particularly severe when fish

are crowded. Once a fish is infected in a fish farm, it can cause large numbers of fish to die

within a short period and in severe cases, control may be impossible and 100% of the fish

can be expected to die.
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Figure 1.5: Fish infected with ICH disease

Columnaris [5] is a bacterial infection resulted from an infection caused by the Gram-

negative. Columnaris is also known as cottonmouth and it affects the gills, the skin, and fins.

Columnaris takes many days before causing fish death. In severe cases, the disease spread

quickly. High water temperature accelerates the development of the disease. However,

lowering the water temperature will not affect the outcome of the disease. Most columnaris

infections are external and appear as white or grayish spots on the head and around the

fins as shown in figure 1.6.

Figure 1.6: Fish infected with Columnaris disease
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1.2.2 Analysis of different behaviors

Abnormal behaviors help in the expectation of fish diseases. Fish that have a disease

can show a variety of behaviors. These are some common abnormal behavior in fish:

• Loss of appetite.

• Difficulty swimming.

• Fish swimming quickly.

• Gasping at surface of water

• Unusual isolation from the group of fish.

1.2.3 Ponds Types

There are different types of ponds of fish farms. These types are earthen ponds, concrete

ponds, and floating cages. These ponds are categorized as either extensive or intensive.

Extensive ponds [6] are much like natural ecosystems concerning nutrient inputs, nutrient

cycling, species diversity, oxygen dynamics, and level of human intervention. Examples are

shown in figure.1.7.

Figure 1.7: Extensive ponds

Intensive ponds [7] relies on technology to raise fish in artificial tanks at very high

densities. Some intensive ponds are a completely closed system, this type of pond is called

an integrated recycling system. Another type is cage ponds. Examples are shown in figure.

1.8



Chapter 1. Introduction 13

Figure 1.8: Intensive Ponds

1.3 Motivation

The main motivations of our project are to prevent and control the spreading of fish

diseases in fish farms. According to some similar systems which are already implemented in

the field of automatic analysis of the fish farm environment, it was found that each system

was able to detect only one type of fish disease. Tracking fish behavior also were not taken

into consideration and no one tried to implement a system that can expect that fish could

have diseases based on their behavior. We consider these facts as a second motivation in our

project. Many research papers tried different algorithms like in [8] [9] [10]. Their success rate

in fish disease recognition ranges between 86% to 90%. Our third motivation is to achieve

higher accuracy by applying different algorithms and trying different classifying techniques.

Finally, our motivation is to building a useful application to inform users of any improper

change in the fish farm environment. Also, we are creating our data-set because this field has

lack of data-sets and research. This project should also take into consideration that manual

diagnosis is not accurate somehow and have more chances of misdiagnosis. Therefore, an

automatic approach is needed by using computer vision techniques to detect and diagnose

fish diseases and enhance the accuracy of results.

1.4 Problem Definition

Automatic analysis of fish farm Environment has a lot of challenging points, whether in

detecting or tracking approaches. In our project, we will detect the type of fish disease and

track fish to expect any abnormal behavior. The two approaches have a lot of challenging

points. Fish detection shows challenges such as background noises, the presence of other

water bodies in images and image quality, while fish tracking is a challenging task due to
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the nature of the videos in which fish is tracked. Our videos were taken in uncontrolled

earthen ponds in fish farms in which the vision is not clear, visual similarity between the fish

in the same farm, fast fish movements, and water cleanness. Fish farm videos also contain

non-fish objects as algae. All these conditions affect the quality of the videos taken.

1.5 Project Description

1.5.1 Objectives

Our system is trying to solve problems concerning fish disease that can cause the whole

fish in farms to die. Currently, manual inspection where experts in this domain can diag-

nose fish disease by themselves has many difficulties, due to fast fish movement may cause

tracking the infected fish to be impossible by human vision. Poor quality of unclear water in

Earthen ponds also causes limitations in diagnosis and tracking. The proposed system in-

troduces an automatic approach by using computer vision and image processing techniques

to detect and diagnose fish diseases.

1.5.2 Scope

Our purpose is to describe design a system that detects fish diseases and track fish

movements in fish farms automatically and examine water quality to help in the expectation

of any abnormal behavior. Finally, the system sends a notification through an android

application to inform users of any improper farm conditions and any detected infections.

1.5.3 Project Overview

Our proposed system aims to analyze fish farm environment by detecting fish diseases

and fish behavior. Fish behavior helps in the expectation of diseased fish. The proposed

system is presented in three consequent stages. During the first stage, the system contains

raspberry pi 3, along with a camera and other sensors. The sensors that are used are tem-

perature and PH to measure underwater temperature and rate of pH. while fish captures are

acquired by the camera. while fish captures are acquired by the camera. Raspberry pi 3 gets

the sensor’s measurements and acquired fish captures and passes the data to be stored in a

computer system for processing. In the second stage, the processing part concerns tracking

fish for detecting any abnormal behavior in farm environment and fish infections. Infection
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detection starts by pre-processing, then segmentation of infected areas, and finally classi-

fication. In the pre-processing phase, different color spaces were applied on input images

which are RGB, YCbCr, and XYZ. For segmentation, we built a gaussian distribution in the

XYZ color space. The XYZ color space was used in the phase of classification by applying

convolution neural networks (CNN). Tracking starts by detecting fish and displays bound-

ing boxes around the detected fishes by applying vision.CascadeObjectDetector. Tracking

fish movement is then applied by the Kanade-Lucas-Tomasi (KLT) algorithm. Finally, the

system sends a notification through an android or web application to inform users of any im-

proper farm conditions and any detected infections. The overview of our proposed approach

is shown in figure. 1.9.
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Figure 1.9: System Overview
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Chapter 2

Automatic Analysis of Fish Farm

Environment

2.1 Similar Systems Information

2.1.1 Similar System Description

2.1.1.1 Concepts And Analysis

In the field of automatic analysis of fish far environment, different systems are based on

image processing and segmentation techniques [8], [9], [10], while others are based on deep

learning techniques [11][12] [13][14]. Traditional feature were extracted in some systems,

deep learning extracted features automatically in other system. The number of datasets

is limited. Multiple systems cannot achieve disease identification, due to limitation of

resources and lack of diseased images that is not large enough to train the system.

2.1.1.2 Different Approaches Objectives

In image processing technique, approaches [8], [9] recognize and identify the Epizootic

Ulcerative syndrome (EUS) disease. Approach [9] was proposed to improve disease identifi-

cation to be more accurately and also to calculate the diseased area. Another approach [10]

was proposed to extract diseased regions and after final diagnosis notifications were sent to

fish farmers. Different fish species were recognized by different approaches [15], [14]. Others

[11], [12] accomplished fish identification in different water environments.
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2.1.1.3 Categorization Based on Segmentation Approaches

Some approaches applied segmentation based on image processing techniques [8], [16],

[10]. Histogram equalization was applied [8] for enhancing fish images then Canny’s edge

detection [16] was applied for segmentation. K-means clustering was applied [9] in seg-

menting diseased area in hue-saturation-value (HSV) color space, based on the hue values.

Otsu’s thresholding, morphological erosion and dilation operations [14] [10] were sometimes

applied in similar systems for noise removal, while others applied Visual Object Tagging

Tool (VOTT) [15] to remove noise. Manual cropping were performed [12] on various seabed

images to separate the fish from seabed. Seabed images were labeled as ”negative” to reduce

misclassification.

2.1.1.4 Features Extraction

Different types of features were extracted for automatic recognition of fish diseases.

Features from accelerated segment test (FAST) [17] was applied [8] on EUS infected fish

images. Principle Component Analysis (PCA) [8], [9] was applied to reduce feature vector

dimensions. PCA achieved good results specially after FAST calculation [8]. Two different

types of feature were extracted [10] based on the polar coordinates and the geometrical

features.

2.1.1.5 Classification

Neural Network [18] was applied [8] on the real image of EUS infected fish images.

PCA was also applied for classification [10]. Convolutional Neural Networks (CNN) were

applied for fish species classification and achieved 96.29% accuracy in approach [14], while

achieved 95% accuracy in approach [15]. CNN based techniques based on You Only Look

Once algorithm (YOLO) were applied [12] for real-time fish detection and recorded 93%

classification accuracy and 16.7 frames per second (FPS) in processing speed [12]. Faster

RCNN technique is applied to calculate the accuracy of the localized image and it reached

99% [15]. CNN model were applied for fish detection in blurry ocean water [11]. Data

augmentation were applied [11] to obtain more learning resources as the available images

are not sufficient for training purpose. Dropout algorithm and Loss Function were applied

to solve overfitting problem [11].
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2.1.1.6 Conclusion and Results

FAST-PCA-NN combination was applied for feature extraction and classification and

achieved 86% accuracy, it is better than others combination technique [8]. PCA was applied

successfully in fish detection and achieved 90% accuracy when applied as feature extractor

[9]. FAST was applied and outperformed Histogram of gradient (HOG) feature in results

[8]. Neural Network was applied and outperformed other classifiers as K-NearestNeighbor

(k-NN) [8]. Canny’s edge detection outperformed Roberts, Sobel and Prewitt. Some ap-

proaches worked on different color spaces [9]. Another approaches have done segmentation

without identification and diagnosing fish disease [8], [9]. YOLO was applied and outper-

formed HOG and Support Vector Machine (SVM) in classification accuracy [12]. Different

activation functions were applied to improve the accuracy such as combination of ReLu and

Sigmoid functions outperformed the combination between Relu and sofmax [15].

2.1.1.7 Databases

Approaches [8], [9] have done their experiments on EUS diseased fish images. Approach

[8] collected their database from National Bureau of Fish Genetic Resources (NBFGR,Lucknow)

and ICAR-Central Inland Fisheries Research Institute (CIFRI), while approach [9] collected

their database from the different part of the Barak Valley and Assam. Approach [10] col-

lected their database from 8 different aquaculture farms in the Wando, Jindo, and Yosu

areas of Korea and their approach were applied on 60 different parasites microscopic im-

ages. Approach [14] tested their proposed method on Fish4Knowledge [19]. Approach

[12] used the labeled fishes in the wild image dataset provided by National Oceanic and

Atmospheric Administration (NOAA) Fisheries [20], it also gathered additional underwa-

ter images from field experiment on Ullungdo Island, Republic of Korea. Approach [11]

collected their training data set from the Gulf of Mexico by a digital camera.

2.1.1.8 Effect of IOT Technology

The proposed system [21] presents an underwater vehicle based on Raspberry PI for

monitoring and protecting the aquatic ecosystem. The Raspberry Pi is used to be connected

with various sensors. The sensors which are used are pressure and temperature sensors to

measure the underwater pressure and temperature. These sensors parameters are displayed

with the help of a display which is connected to raspberry pi as it cannot be connected
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to LCD directly. Accelerometer and magnetometer are also used for speed control and for

finding the direction.

Another approach [17] designed AQUABOT for detecting aquatic debris. Aquatic de-

bris affects the ecosystems badly. It cause damage to marine life, water transport and

human health. AQUABOT is a vision-based monitoring robot system which include rasp-

berry pi connected to camera and other sensors for debris detection. This paper developed

several lightweight for debris detection which include an image registration algorithm and

an adaptive background subtraction algorithm. Image registration algorithm is applied to

extract the horizon line over the water and use it to record images to reduce the effect of

camera shake, while adaptive background subtraction algorithm is used reliable detection

of debris objects.

Different approaches [22] implemented Nusantara 3-Autonomous Underwater Vehicle

(N3-AUV) for exploring underwater. N3-AUV is a robot that can move underwater based

on a program that is installed in the microprocessor of the Vehicle body. The N3-AUV

include two cameras, a Raspberry Pi, a depth sensor, and a compass. It uses two cameras,

where the first camera is placed under the frame to record pictures of cases under the car

and the second in front of the frame to record the conditions in front of the vehicle. The

N3-AUV performance was tested in a pool. N3-AUV achieved an average speed of about

0.5 m/s and a maximum speed of about 1 m/s.

2.1.2 Comparison with Proposed Project
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Table 2.1: Comparative results of similar systems

Systems Recognition prob-
lem

Features
extraction

Classifier Recognition
rate

[8] EUS disease FAST Neural Net-
work

86%

[9] EUS disease PCA Mophological
open

90%

[10] white spot, tri-
chodina and
scuticociliate

polar co-
ordinates,
geometrical
features

PCA 90%

[23] Fish species Artificial neu-
ral networks
(ANN)

ANN 99%

[15] Fish species CNN CNN 95%

[14] Fish species CNN CNN 96.29%

[11] Fish detection CNN YOLO 93%

2.1.3 Screen Shots from previous systems

The following figures shows screen shots from systems mentioned in the previously.

Figure 2.1: Flow of the developed fish disease diagnosis system based on image processing
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Figure 2.2: Fish Recognition using PCA

2.2 Project Management and Deliverables

2.2.1 Tasks and Time Plan

Table 2.2: Time plan table

Task Start Date End Date

Proposal evaluation 12/9/2019 26/9/2019

Writing SRS document 30/10/2019 28/11/2019

SRS evaluation 28/11/2019 28/11/2019

Writing SDD document 1/1/2020 12/2/2020

SDD evaluation 12/2/2020 15/2/2020

System implementation 25/4/2020 21/5/2020

Implementation evalua-
tion

21/5/2020 24/5/2020

Final presentation 4/7/2020 4/7/2020
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2.2.2 Budget

Table 2.3: Budget table

Item Quantity Cost

Raspberry Pi 3 1 1200 LE

Temperature Sensor 1 55 LE

PH Sensor 1 700 LE

Raspberry Pi Camera 1 300 LE

Cable camera 1 100 LE

Waterproof box 1 1000 LE

Memory 1 200 LE

Cables 1 200 LE

Matlab original version 1 8800 LE
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Chapter 3

Software Requirements

Specifications

3.1 Introduction

3.1.1 The Purpose

The purpose of this software requirements specification (SRS) document is to outline

our system requirements for automatic analysis of the fish farm environment. The main

requirements for this system are to identify and diagnose some fish diseases before spreading,

and analyzing fish behavior as it helps in Prediction and detection of fish disease. The

system is proposed to automatically recognize and identify three different types of fish

diseases. These diseases are Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich),

and Columnaris. This document will provide a fulfilled illustration of every single stage

and algorithms used in this stage. Along with a full description of what the system will

do. This software requirements specification document defines how our audience sees the

product and its functionality.

3.1.2 Scope

This SRS document targets owners of fish farms and experts in the fish farm domain.

Our application will help them in saving much more time rather than manual detection. It

will also be beneficial for the government in increasing fish production. This document will

provide details about user characteristics and problems that user face that our project will
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solve it. Fish disease is a substantial source of loss to the owner of fish farms. Production

costs increase due to outbreaks of fish diseases due to the cost of treatment. Therefore, our

automatic identification system for diseased fish is necessary to prevent fish diseases before

huge losses occur.

3.2 Overview

Our proposed system aims to analyze fish farm environment by detecting fish diseases

and fish behavior. Raspberry Pi kit is used and connected to sensors, camera and a personal

computer (PC). The proposed system is presented in three consequent stages. During the

first stage, water quality is examined by measuring water temperature and rate of pH,

while fish captures are acquired by the camera. The kit gets the sensor’s measurements and

acquired fish captures. In the second stage, all inputs are passed to the PC for processing.

This processing concerns detecting any abnormal behavior in the farm environment and

fish infections. Infection detection starts by pre-processing, then segmentation of infected

areas, and finally classification. Finally, in the third stage, the system sends a notification

through an android or web application to inform users of any improper farm conditions and

any detected infections. The overview of our proposed approach is shown in Fig. 3.1.
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Figure 3.1: Proposed System Overview
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3.2.1 Business Context

Fish diseases have a serious impact on the country’s economy. Most experts in the fish

industry currently have limited time and have to make a quick decision without a good

diagnosis of the problem. The process of manually detecting fish diseases and fish abnormal

behavior using human vision consumes a lot of time and limits the accuracy of detection.

Experts also may face difficulties in vision due to fast fish movement and unclear water

in earthen ponds that also cause limitations in diagnosis and tracking. Therefore, there is

an urgent need for an automated system using computer vision to detect and reduce the

impact of fish diseases. This automated system will save time for experts and provides

more accurate results. Moreover, reduce system running costs by eliminating the need for

continuous human monitoring and increasing behavior analysis accuracy by excluding the

human subjectivity factor. Our proposed automated system also reduces the cost of fish

production by controlling fish diseases as infectious diseases can cause multibillion-dollar

loss annually.

3.3 General Description

3.3.1 Product Functions

Figure 3.2: Proposed System Block Diagram

This part outlines all sections separately in details:
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3.3.1.1 The Hardware Section

This section is composed of Raspberry pi hardware circuit which is connected to sensors

and camera.

• Sensors: The sensors are responsible for examining water quality by measuring

water temperature and rate of pH

• Raspberry pi: The Raspberry pi gets the sensor’s measurements and acquired

fish captures to send them to the PC for processing.

• Camera: The camera is responsible for capturing fish movements.

3.3.1.2 Android Section

This section is to inform users of any improper farm conditions and any detected infec-

tions. This section include user that interact with the system and admin which control all

system’s partitions.

Admin is responsible for:

• Sign in and Sign out.

• Manage Farm.

• Manage Hardware.

• Delete user account.

• Listing all users.

• Update his profile information.

User is responsible for:

• Sign in/up and Sign out.

• View Profile.

• Edit profile.

• View Readings.

• View his farm data.

• View Notifications.

3.3.1.3 Fish analysis

This part concerns tracking fish for detecting any abnormal behavior in farm environ-

ment and fish infections.

The infection detection part passes through the following stages:
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1. The Pre-Processing Module

• Convert to YCBCR color space.

• Convert to XYZ color space.

• Resizing.

2. Segmentation Module

• Apply Gaussian distribution.

• Calculate mean of Cb/Cr.

• Calculate co-variance.

• Apply texture features.

3. Classification Module

It responsible for the classification of the input image as Fish disease/not Fish

disease and diagnose which type of diseases.

• CNN

1. ResNet50

2. ResNet101

3. Alex-Net

4. ResNet18

5. VGG16

6. VGG19

7. mobilenetv2

8. Xception

9. Inceptionresnetv2

10. Shufflenet

11. Nasnetmobile

12. Nasnetlarge

13. Squeezenet

14. Inceptionv3

15. Densenet201

16. Googlenet

The Tracking part passes through:

• Detect Fish in video.
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• Convert bounding box to set of points.

• Track points.

• Calculate Velocity.

3.3.2 Similar Systems

Different approaches [8], [24], [9] [10] applied computer vision techniques to detect and

identify fish diseases. Some approaches [8][9] were proposed to classify epizootic ulcerative

syndrome (EUS) diseased fish. Color segmentation methodology is often applied on fish

images to extract damaged skin [24]. Another approach [10] extracted infected regions and

send notifications to fish farmers. Notification include diagnosed disease and the suggested

treatment.

Another approaches[25] [26] [27] are introduced to analyze fish trajectories in videos.

Trajectories are classified to normal and abnormal behaviors. The study of fish behavior is

important to analyze the environmental conditions that may cause diseases in the future.

Normal fish trajectories are first identified then abnormal ones are detected by applying

filtering mechanisms [25][27].

An Approach [8] applied histogram equalization followed by edge detection for segmen-

tation. Canny’s edge detector achieved the best results, compared to other edge detectors.

Features from Accelerated Segment Test (FAST)[17] outperformed other features like His-

togram of gradient (HOG)[28] features when been applied on EUS infected images. Princi-

pal Component Analysis (PCA) [29], [9] was applied after FAST features to reduce feature

vector dimensions. Neural Network[18] achieved better recognition results compared to

K-Nearest Neighbor (k-NN) [30] when applied as a classifier.

K-Means clustering [31] was applied for segmenting diseased area in hue-saturation-

value (HSV) color space of fish diseased images, based on the hue values. Morphological

operations[32] were applied to compute the diseased area, as shown in equation 3.1.

A©B = (A	B) ⊕B (3.1)

Where 	 and ⊕ represent erosion and dilation, respectively and B is the structuring element.

Another usage of morphological operations was noise removal and edge detection dur-

ing preprocessing stage [10]. Morphological erosion and dilation operations were applied to

delete noise as shown in equations 3.2 and 3.3. Diseased area were detected by discriminat-
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ing small and large connected components.

Erosion : I ⊗ SE = X : SE +X < I (3.2)

Dilation : I ⊕ SD = Ic 	 (−SD)C (3.3)

where I is a source image, SE and SD are the structuring elements for erosion and dilation

operations,respectively. Two types of features were extracted [10], the first is based on

the polar coordinates and the second set is based on the geometrical features as defined in

equations 3.4 and 3.5, respectively.

X = r cos θ, Y = r sin θ (3.4)

Where ris the radial distance from the origin and θ is the counterclockwise angle with the

x-xis, In terms of X,Y, r and θ the geometric features were calculated by

r =
√
x2 + y2, θ = tan− 1(

y

x
) (3.5)

Convolutional Neural Networks (CNN)[33], were applied for fish disease classification in

another approach [14].Images were enhanced by applying Gaussian blurring[34] and mor-

phological operations. Otsu’s thresholding[35] and Pyramid Mean Shifting (PMS) [36],

defined in equation 3.6, were then applied to enhance classification by CNN.

m(x) =

∑
xi∈Nn

K(xi − x)xi∑
xi∈Nn

K(xi − x)
(3.6)

Approach [25] proposed a filtering mechanism like a cascade classifier [37] that is based

on filtering mechanism. It define rules for normal trajectories. Any trajectories not satisfy-

ing the rules are considered abnormal behaviors.

Hierarchical approaches [26][27] were proposed to extract different types of features,

like curvature scale space (CSS) [38], moment descriptors[39], velocity, acceleration, cen-

tered Distance Function (CDF) [38], Vicinity Features, Loop Features, Features Based on

Normalized Size of Bounding Box. Affinity propagation (AP) [40] is applied for cluster-

ing method. AP perform better than K-means, mixture models and mean-shift clustering.

Outlier detection [41] method is applied. It is presented in two types of outlier trajectories:
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those located in small clusters and those that exist in dense clusters.

θi =
Yi+1 − Y i

Xi+1 −Xi
(3.7)

3.3.3 User Characteristics

There are three types of users that interact with the system:

1. Owners of fish farms:

• Must have basic knowledge in using Android mobile devices, how to use the

device and apps.

2. Experts of fish domain:

• Must have basic knowledge in using Android mobile devices, how to use the

device and apps.

3. Admin:

• Must be able to work with firebase and to manage the firebase through UI.

• Must have knowledge in using Android mobile devices, how to use the device

and apps.

3.3.4 User Problem Statement

Fish disease diagnosis suffers from some limitations that need a high level of expertise

to be solved. Fish disease domain is affected by varying expertise of experts. Diagnosis

differs based on expert skills. Experts may face some problems due to fast fish movement

which causes tracking infected fish to be impossible by human vision. Poor quality of water

in earthen ponds also causes limitations in diagnosis and tracking. Therefore, we proposed

a system to detect fish diseases and analyze fish behavior automatically.

3.3.5 User Objectives

Applying image processing and computer vision techniques, vision can be improved,

and tracking fish becomes easier. The user will only receive notification in their mobile

phones, to know if there are any improper changes in fish farm environment or any detected

infections.
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3.3.6 General Constraints

There is no system that has no constrains, our system will have some constrains:

• Mobile application applicable for android mobile devices only.

• Device must be connected to the internet to receive notification.

• The connection under the water that the camera could face.

3.4 Functional Requirements

3.4.1 Admin/User

FID FR1

Name Register

Description The user registers with his/her information to create

an account

Input Name , Email , Password and phone

Output Confirmation Message and asks user to log in or error

message upon validating the fields

Action Checks validation of all fields and if so the data is

entered in a new record in the database accordingly

Pre-condition None

Post-condition Database is updated with a new user account

Dependencies None
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FID FR2

Name Login

Description User/Admin can login with his/her email and pass-

word into his/her account

Input Email, Password

Output The homepage is previewed and login successful mes-

sage or error message upon validating the fields

Action Checks validation of all fields and if so compares data

entered to that in the database records

Pre-condition User/Admin is already registered in the database

Post-condition Redirected to the homepage

Dependencies FR1

FID FR3

Name Sign Out

Description User/Admin will sign out of his/her account

Input None

Output Logged out confirmation

Action User/Admin will sign out

Pre-condition Admin/User is signed in to his/her account

Post-condition Admin/User is signed out

Dependencies FR2
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FID FR4

Name Deleting a user’s Account

Description The Admin deletes a user’s account from the system

Input user’s ID

Output Confirmation message or error message if something

went wrong upon removing the user from the system

Action Delete selected user’s record from the database

Pre-condition Desired user is already registered in the database

Post-condition Desired user’s record is removed from the database

Dependencies FR1

FID FR5

Name listing all user’s

Description The Admin lists all the users found in the system

Input None

Output All users registered in the system and their informa-

tion are previewed

Action Retrieves information about the users registered in the

system from the database

Pre-condition At least one user is registered in the database

Post-condition All users are previewed

Dependencies FR1
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FID FR6

Name View Readings

Description user can view sensors readings of his fish farm

Input None

Output readings are displayed

Action Retrieve the data from the database

Pre-condition user is logged in to the system

Post-condition Data is fetched from the database

Dependencies FR2

FID FR7

Name Show Notification

Description user can show notification being sent when there is

any improper change in fish farm environment

Input None

Output Notification is previewed

Action user show notification

Pre-condition Sensors readings is checked

Post-condition Notification is received

Dependencies FR2
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FID FR8

Name Adding farm

Description The admin adds new farm to the system

Input Farm Name/ID

Output Confirmation message or error message if something

went wrong upon validating the fields

Action Checks validation of all fields and if so the data is

entered in a new record in the database accordingly

Pre-condition Desired farm is already added in the database

Post-condition Database is updated with a new farm

Dependencies None

FID FR9

Name Edit farm

Description The admin edit farm details in the system

Input Farm ID

Output Confirmation message or error message if something

went wrong upon editing the fields

Action The information changed is taken and sent to the

corresponding attribute in the farm’s record in the

database to be updated

Pre-condition Desired farm is already added in the database

Post-condition Database is updated with the new farm details

Dependencies FR8
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FID FR10

Name Deleting farm

Description The Admin deletes farm from the system

Input farm ID

Output Confirmation message or error message if something

went wrong upon removing farm from the system

Action Delete selected farm record from the database

Pre-condition Desired farm is already added in the database

Post-condition Desired farm record is removed from the database

Dependencies FR8

FID FR11

Name listing all farms

Description The Admin lists all the farms found in the system

Input None

Output All farms added in the system and their information

are previewed

Action Retrieves information about the farms added in the

system from the database

Pre-condition At least one farm is added in the database

Post-condition all farms are previewed

Dependencies FR8
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FID FR12

Name Adding hardware

Description The admin adds new hardware to the system

Input hardware Name/ID

Output Confirmation message or error message if something

went wrong upon validating the fields

Action Checks validation of all fields and if so the data is

entered in a new record in the database accordingly

Pre-condition Desired hardware is already added in the database

Post-condition Database is updated with a new hardware

Dependencies None

FID FR13

Name Edit hardware

Description The admin edit hardware details in the system

Input hardware ID

Output Confirmation message or error message if something

went wrong upon editing the fields

Action The information changed is taken and sent to the cor-

responding attribute in the hardware record in the

database to be updated

Pre-condition Desired hardware is already added in the database

Post-condition Database is updated with the new hardware details

Dependencies FR12
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FID FR14

Name Deleting hardware

Description The Admin deletes hardware from the system

Input hardware ID

Output Confirmation message or error message if something

went wrong upon removing farm from the system

Action Delete selected farm record from the database

Pre-condition Desired hardware is already added in the database

Post-condition Desired hardware record is removed from the database

Dependencies FR12

FID FR15

Name listing all hardware

Description The Admin lists all the hardware found in the system

Input None

Output All hardware added in the system and their informa-

tion are previewed

Action Retrieves information about the hardware added in

the system from the database

Pre-condition At least one hardware is added in the database

Post-condition all hardware are previewed

Dependencies FR12
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3.4.2 Hardware

FID FR16

Name Take video

Description This function is used to take video from camera

Input None

Output Video

Action Raspberry pi takes video from camera

Pre-condition Raspberry pi is connected to camera

Post-condition video is taken from camera

Dependencies None

FID FR17

Name Get PH sensor reading

Description Get Reading from PH sensor and pass it in Raspberry

pi

Input Readings from PH sensor

Output Collection of PH sensor data

Action sending readings to Raspberry pi

Pre-condition sensors is connected to raspberry pi

Post-condition Readings passed to Raspberry pi

Dependencies None
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FID FR18

Name Get Temperature sensor reading

Description Get Reading from Temperature sensor and pass it in

Raspberry pi

Input Readings from Temperature sensor

Output Collection of Temperature sensor data

Action sending readings to Raspberry pi

Pre-condition sensors is connected to raspberry pi

Post-condition Readings passed to Raspberry pi

Dependencies None

FID FR19

Name Send Notification

Description Notification will be sent to the user through mobile ap-

plication to notify him/her that he/she has improper

changes in farm environment or detected infections

Input Boolean choice

Output Notification is sent

Action Check sensors values and send notification to the user

accordingly.

Pre-condition PH and Temperature values is sent.

Post-condition User received notification

Dependencies FR17, FR18
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FID FR20

Name Upload PH sensor readings to firebase

Description This function is for collecting PH sensor readings from

raspberry pi and uploading it to firebase

Input Readings of PH

Output PH sensor data are uploaded to firebase

Action Sending readings from raspberry pi to firebase

Pre-condition Sensors reading are available in raspberry pi

Post-condition Data are uploaded to the firebase

Dependencies FR17, FR18

FID FR21

Name Upload temperature sensor to firebase

Description This function is for collecting temperature sensor read-

ings and uploading it to firebase

Input Readings of temperature sensors

Output temperature sensor data are uploaded to firebase

Action Sending readings from raspberry pi to firebase

Pre-condition Sensors reading are available in raspberry pi

Post-condition Data is uploaded to the firebase

Dependencies FR17, FR18
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FID FR22

Name Listing all sensors readings

Description This function is for listing all sensors readings found

in the system

Input Boolean choice

Output All sensors readings registered in the system are pre-

viewed

Action Retrieves sensors readings registered in the system

from the database.

Pre-condition At least one sensor reading is registered in the

database

Post-condition None.

Dependencies FR20, FR21

3.4.3 Tracking and disease detection

FID FR23

Name Data augmentation

Description This function is used to increase the diversity of images

that is available in data-set for training models

Input RGB image

Output Size of training data-set is expanded

Action Choose an image to apply data augmentation on it.

Pre-condition RGB image

Post-condition Collection of RGB images

Dependencies None
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FID FR24

Name Create XML file

Description This XML file contain data which is extracted from

video in the dataset to be compared with frames taken

from video.

Input image

Output XML file

Action compare data in XML with given image

Pre-condition Images from the dataset

Post-condition XML Created

Dependencies None

FID FR25

Name Draw border

Description This function is used to add border on detected fish.

Input image

Output Detected image by drawing border

Action Add border when fish is detected.

Pre-condition snapshots from video

Post-condition images of detected fish

Dependencies FR24
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FID FR26

Name Count Number of detected fish

Description This function is used to count borders of detected fish.

Input snapshots from video

Output Number

Action count number of detected fish.

Pre-condition border is added on detected fish

Post-condition Number of border is added

Dependencies FR24, FR25

FID FR27

Name Video segmentation

Description This function is used divide video into frames then

Convert frames to YCBCR then change values of

YCBCR

Input video

Output video after applying segmentation

Action Convert frames to YCBCR, then change values of

YCBCR

Pre-condition video

Post-condition video after segmentation

Dependencies FR16, FR31
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FID FR28

Name Point Tracker

Description This function is used to track a set of points.

Input Video frame

Output Tracked points and reliability of track

Action This function is used to apply Kanade-Lucas-Tomasi

(KLT) feature-tracking algorithm to track a set of

points.

Pre-condition Videos

Post-condition Set of points

Dependencies None

FID FR29

Name Velocity

Description This function is used to calculate velocity

Input image detect corners of fish

Output Rate of position and speed

Action calculate velocity and acceleration

Pre-condition fish is detected

Post-condition velocity and acceleration is calculated

Dependencies FR27, FR28
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FID FR30

Name Estimate Geometric Transformation

Description This function is applied to find the transformation ma-

trix

Input MatchedPoint1 and matchedPoints2

Output Geometric transformation

Action This function is applied to find the transformation ma-

trix which maps the greatest number of point pairs

between two images.

Pre-condition points location of the frame

Post-condition Geometric transformation matrix

Dependencies FR28

FID FR31

Name Detect Minimum Eigen Features

Description This function detects corners and return cornerPoints.

object.

Input Image

Output Points

Action This function detects corners by applying minimum

eigenvalue algorithm and return cornerPoints object.

Pre-condition points location of the frame

Post-condition CornerPoints

Dependencies FR28
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FID FR32

Name Transform Points Forward

Description This function applies the forward transformation of

2-D geometric transformation

Input Geometric transformation and x,y,z-coordinates of

points to be transformed and Coordinates of points

to be transformed

Output x,y,z-coordinates of points after transformed and Co-

ordinates of points after transformed

Action It apply the forward transformation of 2-D geometric

transformation

Pre-condition Geometric Transformation Matrix

Post-condition Reshape of bounding box

Dependencies FR30

FID FR33

Name Histogram Based Tracker

Description This function is used to identify the tracked object.

Input Video frame

Output Bounding box[x y width height] and Orientation angle

Action It is applied to identify the tracked object.

Pre-condition Fish is detected

Post-condition Histogram tracker

Dependencies FR25
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3.4.4 Image Pre-processing

FID FR34

Name Convert to YCBCR

Description Converts RGB image to YCBCR

Input RGB image

Output YCBCR image

Action Check that image is in RGB color space

Pre-condition Acquired from video frame

Post-condition Image is converted into YCBCR

Dependencies FR23

FID FR35

Name Convert to XYZ

Description Converts RGB image to XYZ

Input RGB image

Output XYZ image

Action Check that image is in RGB color space

Pre-condition Acquired from video frame

Post-condition Image is converted into XYZ

Dependencies FR23
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FID FR36

Name Resize image

Description Image will be resized to cover the part that will be

classified

Input RGB image

Output image is resized

Action Check that image is uploaded

Pre-condition Acquired from video frame

Post-condition Image is resized.

Dependencies FR23

3.4.5 Image Segmentation

FID FR37

Name Apply Gaussian distribution of ycbcr

Description It applies the predefined Gaussian filter on the image

Input YCBCR image

Output segmented image

Action It applies the gaussian filter on the image after apply-

ing the low-pass filter

Pre-condition The image before applying the Gaussian filter

Post-condition The image after applying the Gaussian filter

Dependencies FR34
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FID FR38

Name Calculate Mean of CB/CR

Description It Calculates the Mean of CB/CR

Input YCBCR image

Output Image Mean

Action Takes the image and calculate the Average of the Pix-

els.

Pre-condition Image’s mean is not calculated

Post-condition Image’s mean is calculated

Dependencies FR34

FID FR39

Name Calculate Co-variance of ycbcr

Description It Calculates the co-variance.

Input YCBCR image

Output Image with co-variance value

Action Takes the image and calculate the co-variance

Pre-condition Image’s co-variance is not calculated

Post-condition Image’s co-variance is calculated

Dependencies FR34
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FID FR40

Name Calculate Mean of X/Y

Description It Calculates the Mean of X/Y

Input XYZ image

Output Image X/Y Mean

Action Takes the image and calculate the mean X/Y of the

Pixels

Pre-condition Image’s mean is not calculated

Post-condition Image’s mean is calculated

Dependencies FR35

FID FR41

Name Calculate Co-variance of XYZ

Description It Calculates the co-variance.

Input XYZ image

Output Image with co-variance value

Action Takes the image and calculate the co-variance

Pre-condition Image’s co-variance is not calculated

Post-condition Image’s co-variance is calculated

Dependencies FR35
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FID FR42

Name Apply Gaussian distribution of xyz

Description It applies the predefined Gaussian filter on the image

Input XYZ image

Output segmented image

Action It applies the gaussian filter on the image after apply-

ing the low-pass filter

Pre-condition The image before applying the Gaussian filter

Post-condition The image after applying the Gaussian filter

Dependencies FR40,FR41

FID FR43

Name Adaptive threshold

Description It applies the threshold on Gaussian distribution

model result

Input Result from Gaussian distribution

Output Binary image

Action It applies adaptive threshold on Gaussian distribution

model result

Pre-condition Gaussian distribution is applied

Post-condition The image after adaptive threshold

Dependencies FR42



Chapter 3. Software Requirements Specifications 55

FID FR44

Name Crop

Description It crops diseased area

Input Result from adaptive threshold and test image

Output Crops

Action It crops diseased pixels

Pre-condition Adaptive threshold is applied

Post-condition Image is cropped

Dependencies FR43,FR43

FID FR45

Name Convert to gray scale

Description Converts RGB image to gray scale

Input RGB image

Output Gray scale image

Action Check that image is in RGB color space

Pre-condition Acquired from video frame

Post-condition Image is converted into gray scale

Dependencies FR23
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FID FR46

Name GLDM

Description It gets the probability density function

Input Gray scale image

Output Probability density values

Action It gets the probability density

Pre-condition Grey scale image

Post-condition Probability density values

Dependencies FR45

3.4.6 Classification

FID FR47

Name CNN Classifier

Description this function is used to train data and integrate with

it with features to classify new inputs of images

Input training features

Output Accuracy results

Action Training features are mentioned including functions

for preprocess of images

Pre-condition Testing and training available but not calculated with

each other

Post-condition Training and testing compared with each other then

the disease is classified

Dependencies FR44

3.5 Interface Requirements

3.5.1 User Interfaces

The system user interface is designed to be simple enough and allow minimal interaction,

as shown in figure 3.3 and 3.4.

3.5.1.1 GUI
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Figure 3.3: Admin’s Mobile Application Wireframe
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Figure 3.4: User’s Mobile Application Wireframe
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3.6 Performance Requirements

• The system must be able to handle large training datasets to ensure model

accuracy.

• The time for sending notification after detecting any abnormal behavior must

be short.

• No performance needed in the mobile, the mobile will only receive notification

to notify if there is any improper change in fish farm environment.

3.7 Design Constraints

• This system needs to be user friendly to ease the process if the user lack of

professional computer skills.

• Any smart mobile device that include the android operating system and must

have the connection with the internet to deal with the real-time data transfer.

• The camera resolution should not be less than HD 1080.

3.8 Other non-functional attributes

3.8.1 Security

Users’ passwords must be hashed in the database. Users of our system shall authenticate

themselves using their username and password. Also, personal information about the users

such as mobile numbers and passwords for instance must be protected.

3.8.2 Reliability

The system being developed has to be reliable in its operation. If the internet is dis-

connected, it saves the readings data to the database to prevent any loss of data. The user

should be able to trust that the system should be reliable enough which does not cause

failure or crash.

3.8.3 Maintainability

The system could be improved by different developers so ease of system maintainability

is important, it should be easy to extend thought the implementation of MVC design pattern
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and using naming convention which eases the use of functions and understanding their

purpose. MVC design pattern divides the system into three modules which are Model, View,

and controller, it simply separates handling of the data from how the interface appears to

the user and the intermediate communicator between both of them.

3.8.4 Performance and speed

This system will do all the processing parts on the machine so no performance needed

on the mobile. Also, the system is automatically clearing all the readings every 3 months

to free up storage which might have an impact on mobile performance. The system must

be interactive and the delays involved must be reduced. Detection and classification must

have no delays.
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3.9 Preliminary object-oriented domain analysis

Figure 3.5: System Class Diagram
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3.10 Operational Scenarios

Tabular description of the Search for user use case

Actors: Admin

Description: Admin can search for users that are saved on the system.

Data: User id.

Response: All user’s are displayed.

Comments: Admin must be logged in.

Tabular description of the Create user account use case

Actors: Admin.

Description: Admin will be able to create accounts for new user.

Data: user info (Name, telephone , password).

Response: Confirmation that account has been created.

Comments: Admin must be signed in.

Tabular description of the Delete user account use case

Actors: Admin.

Description: Admin will be able to delete user accounts.

Data: user id.

Response: Confirmation that account has been deleted.

Comments: Admin must be signed in.

Tabular description of the Update user info use case

Actors: Admin.

Description: Admin will be able to update user’s data.

Data: User ID.

Response: User Profile displayed for editing.

Comments: Admin must be signed in.



Chapter 3. Software Requirements Specifications 63

Tabular description of the Convert image to YCBCR use case

Actors: Pre-processing System.

Description: Test image is converted from RGB to YCBCR.

Data: RGB Test Image.

Response: Image is converted.

Comments: None.

Tabular description of the Convert image to XYZ use case

Actors: Pre-processing System.

Description: Test image is converted from RGB to XYZ.

Data: XYZ Test Image.

Response: Image is converted.

Comments: None.

Tabular description of the Perform Gaussian Distribution use case

Actors: Segmentation System.

Description: Perform Gaussian Distribution to image.

Data: YCBCR image to segment.

Response: segmented image.

Comments None.

Tabular description of calculating mean of CB/CR use case

Actors: Segmentation System.

Description: calculate the Average of the Pixels.

Data: YCBCR image to segment.

Response: Mean is calculated.

Comments None.
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Tabular description of the View Report use case

Actors: User.

Description: User can view report.

Data: None.

Response: Report data are displayed.

Comments: user must be logged in.
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Figure 3.6: System Use Case
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Chapter 4

Software Design Document

4.1 Introduction

4.1.1 The Purpose

The purpose of this software design document is to describe the architecture and system

design for our Automatic Analysis of Fish Farm Environment. Our system mainly detects

and diagnoses fish diseases in fish farms automatically and examine water quality. We

provide a full illustration for each stage and development process. This document will

explain in detail, the components of the system represented in the sequence diagram. The

implementation of the project and its development will be shown in the class diagram. It

illustrates the system components and how they interact with each other.

4.1.2 Scope

This software design document targets owners of fish farms and experts in the fish farm

domain. Our application will help them in saving much more time rather than manual

detection. Our proposed project is an automated system to diagnose fish diseases. The main

objective is the detection and improvement of classification accuracy of fish diseases and

fish abnormal behaviors. Our system is a recognition system that performs pre-processing,

segmentation, and classification of the image.
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4.1.3 Overview

Our system is created to performs detection and identification of fish diseases and ana-

lyze fish abnormal behavior. Its goal is to prevent and control the spreading of diseases. Our

system will work on three different types of fish diseases. These diseases are Epizootic ul-

cerative syndrome (EUS), Ichthyophthirius (Ich), and Columnaris. Our system will consist

of a mobile application that will read the data that will be collected from sensors (PH and

Temperature) and receive a notification if any improper change happened. The farm owner

will be provided by an interface through which he could monitor the farm environment.

4.2 System Overview

Our proposed system aims to analyze fish farm environment by detecting fish diseases

and fish behavior. Fish behavior helps in the expectation of diseased fish. The proposed

system is presented in three consequent stages. During the first stage, the system contains

raspberry pi 3, along with a camera and other sensors. The sensors that are used are

temperature and PH to measure underwater temperature and rate of pH. while fish captures

are acquired by the camera. while fish captures are acquired by the camera. Raspberry

pi 3 gets the sensor’s measurements and acquired fish captures and passes the data to

be stored in a computer system for processing. In the second stage, the processing part

concerns tracking fish for detecting any abnormal behavior in farm environment and fish

infections. Infection detection starts by pre-processing, then segmentation of infected areas,

and finally classification. The classification of fish diseases are done by applying convolution

neural networks (CNN). Tracking of fish movement is then applied by the Kanade-Lucas-

Tomasi (KLT) algorithm. Finally, the system sends a notification through an android or web

application to inform users of any improper farm conditions and any detected infections.

The overview of our proposed approach is shown in figure. 4.1.
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Figure 4.1: System Overview
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4.3 System Architecture

4.3.1 Architectural Design

The System is designed in MVC architecture as shown in fig 4.2.

4.3.1.1 View

It is responsible for the presentation of data and representing the User Interface (UI). It

consists of some forms to help the user to navigate through the system and the functionalities

of the system. such as:

• Sign up: This interface allows new users to sign up to the application, by en-

tering their information for the database to store.

• Sign in: This interface is meant for the users and admins to log in the applica-

tion.

• Home Page: This interface that manages all the modules inside our system.

There are 4 modules that the user may interact with.

1. Edit Profile: This interface allows each user to edit his data.

2. Profile: This interface allows users to show all his personal informa-

tion.

3. Readings: This interface is for listing all the daily sensor readings.

4.3.1.2 Model

• Libraries

1. Offset-Date-Time is an immutable representation of a date-time with

an offset. This class stores all date and time fields, to a precision of

nanoseconds, used to model data in simpler applications. This class

may be used when modeling date-time concepts in more detail.

2. Firebase Authentication: Firebase Authentication provides backend

services, easy-to-use SDKs, and ready-made UI libraries to authenti-

cate users to your app. It supports authentication using passwords,

phone numbers, popular federated identity providers like Google,

Facebook, and Twitter, and more. It uses to help to create a new
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sign method that takes in an email address and password, validates

them, and then signs a user in with the signInWithEmailAndPass-

word method.

• Core

DB Manager: The Database Manager takes control by notifying the server with

a recent update like if new reading data is arriving, the server also uses it when

finishing processing by sending a notification to the admin if there is an infection

in the farm. Or storing the reading data from the sensors.

4.3.1.3 Controller

It is responsible for binding the view and model. It takes input from the view and

sends it to the database and retrieves data from the model and sends it to the view to

be previewed there. The handling of all the data coming from the input hardware devices

including PH readings coming from the PH sensor, temperature reading coming from the

temperature sensor. Some of the controllers we are having; admin Controller that is respon-

sible for handling interactions made within admin views, user controller that is responsible

for handling interactions made by fish farm owner and the notification controller that is

responsible for sending notifications to the user when there is any improper change in a fish

farm environment.
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Figure 4.2: MVC Architectural Design
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4.3.2 Decomposition Description

4.3.2.1 Class Diagram

Figure 4.3: Class diagram
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Snaps of our class diagram:

Figure 4.4: MVC Class Diagram

• This class diagram implements the MVC design pattern which is used to sepa-

rate the application’s view from it’s model by interacting via the controller.

• Model: Represents an object carrying data. It can also have logic to update the

controller if its data changes.

• View: Represents the visualization of the data that the model contains. It is

responsible for the presentation of data and representing the user interface (UI).

• Controller: Acts on both model and view. It is responsible for binding the view

and model, it controls the data flow into the model object and updates the view

whenever data changes. It keeps view and model separate.

• In the singleton design pattern, the class extends itself. It is one of the simplest

design patterns. In our case, it is responsible for the database connection.
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Figure 4.5: Singleton Design Pattern

• The Observer Design Pattern: Defines a one-to-many relationship so that when

one object changes state, the others are notified and updated automatically.

Firebase is being used in this case for handling the notifications for the farm

owners’ mobile application.
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Figure 4.6: Computer system

• Image Pre-processing: contain ID, images, this table used to apply different

color spaces on input images during the pre-processing phase

• Image: This table contains ID, Name, path, size to be able to differ between

the different images.

• Video Pre-processing: contain ID, images, this table used to apply different

color spaces on input images during the pre-processing phase

• Video: This table contains ID, Video, date to be able to differ between the

different Videos.

• Image segmentation: Contain ID, Image.this table used to convert from RGB

color space to YCbCr

• Data augmentation: Contain ID, Image.this table used to increase the number

of our dataset

• Image Classification: Contain ID, Image.This table used to detected infections.
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4.3.2.2 Activity Diagram

Figure 4.7: Activity diagram
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4.3.2.3 Sequence Diagrams

Figure 4.8: Sequence diagram

Figure 4.9: Sequence diagram
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Figure 4.10: Sequence diagram

Figure 4.11: Sequence diagram
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4.3.3 Design Rationale

As mentioned previously, we have used Model-View-Controller (MVC) as our archi-

tecture as it differentiating the layers of a project in Model, View, and Controller for the

Re-usability of code and better maintenance. So, we can easily make modifications, re-use,

and optimize the functionality part as it is our core. Accuracy is a very important aspect

of our system so it will be very sensitive with data so this should be developed in a very

accurate and efficient way.

4.4 Data Design

This is a relational preview of the database.

Figure 4.12: Database

4.4.1 Data Description

• User: This table contains the ID, username, phone, Email. It also contains.
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• Readings: This table contains ID, Farm id because we have different Farms,

Date-id to get the current date, sensors-id because we have (temperature-PH)

sensors, readings for each sensor, and hardware-id because we have different

hardware for each farm. In this table, the Admin needs to list all the sensor

daily reading.

• Farm: This table contains ID, Name to be able to differ between the different

Farms.

• Hardware: This table contains ID, Name to be able to differ between the differ-

ent Hardware.

• Sensors: This table contains ID, name because we have (PH-Temperature) sen-

sors. So, the attribute ”name” is used to be able to differ between different

sensors.
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4.5 Component Design

Figure 4.13: Flowchart for disease classification approach

4.5.1 Pre-processing

In this phase, we prepare the sample images for the segmentation process, we applied

different color spaces on input images during the pre-processing phase, as shown in figure

4.14 Three different color spaces were applied; RGB, YCbCr ,XYZ and LAB.

Figure 4.14: Infected Area in Different Color Spaces
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4.5.1.1 RGB color space

RGB represents color as red, green and blue.

4.5.1.2 Ycbcr color space

YCbCr, is a family of color spaces used as a part of the color image pipeline in video. the

Y is the brightness (luma), Cb is blue minus luma (B-Y) and Cr is red minus luma (R-Y).

RGB color space is converted to ycbcr color space, After converting to YCbCr space, the

extracted Cb and Cr coefficients are used for cell segmentation process. Conversion from

RGB color space to Ycbcr is defined by equations 4.1, 4.2, 4.3.

Y = 16 +
65.738R

256
+

129.057G

256
+

25.064B

256
(4.1)

Cb = 128 − 37.945R

256
− 74.494G

256
+

112.439B

256
(4.2)

Cr = 128 +
112.439R

256
− 94.154G

256
− 18.285B

256
(4.3)

4.5.1.3 Xyz color space

The XYZ color space has the unique property of being able to express every color that

the human eye can see which in turn means that it can express every color that can be

captured by a camera and hence every color that anyone might ever want to reproduce in

the video. X, Y, and Z are mathematically generated RGB extrapolations to avoid negative

numbers and are called Tristimulus values. Y means luminance, Z is somewhat equal to

blue And X is a combination of orthogonal and non-negative cone response curves. RGB

color space is converted to Xyz color space which is used for the segmentation process.

To convert from RGB to XYZ, the equations 4.4, 4.5 and 4.6 are applied consequently.

If R,G,B ≥ 0.04045,

r, g, b = ((R,G,B + 0.055)/1.055)(2.4)) (4.4)

otherwise,

r, g, b = (R,G,B/12.92) (4.5)
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Then, matrix M is used to convert to XYZ.(
X

Y

)
Z = (M)

(
r

g

)
b (4.6)

4.5.2 Segmentation

In general, segmentation is an essential stage to facilitate the classification process. The

segmentation process is applied to group similar pixels together into a segment. In our

system, the Gaussian models are applied for segmentation. Building an effective Gaussian

distribution requires a suitable computed means and covariances. Small crops of different

diseases were used to get the different values of the infected pixels values in different color

spaces. Based on the diseases pixels values, a mean and covariance is computed for each

disease. Accordingly, three different Gaussian distribution models are built for each disease.

Applying the different models on the input images results in computing the probability

of each pixel to be infected or not. Gaussian distributiona are applied to indicate the

probability of including any infected area using mean and covariance.

Mean and covariance are computed to build the gaussian distribution as follow:

1. Read cropped images

2. Convert images to Xyz

3. Get X value from xyz

4. Apply low pass filter (LPF) to X

5. Get Z value from xyz.

6. Apply low pass filter (LPF) to Z

7. Compute mean and covariance of x and z values

The built distribution is then applied on test images after computing mean and covari-

ance values on the XYZ color space. The adaptive threshold was finally applied to choose

the segmented area based on the computed probability.

4.5.3 Classification

You might know about deep neural network and specially convolution neural networks

are very effective in building recognition systems [42]. Deep neural networks get raw data

and features are computed and learned inclusively. CNN can have tens or hundreds of layers

that each learns to detect different features of an image. It is composed of an input layer,
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an output layer, and many hidden layers in between. Three of the most common layers are

convolution, activation, and pooling.

4.5.3.1 Convolutional Layer

Convolutional layers are the major building blocks used in convolutional neural net-

works. This layer is performed when we extract a segment from the image sized (n*n)

centered at location (x,y). We then multiply the extracted segment element-by-element

with convolution filter also sized (n*n) and add them all together to create a single output.

As shown below in figure 4.15.

Figure 4.15: Convolutional Layer

4.5.3.2 Activiation Layer

There are several activation functions each have a different function. Some of the

popular types of activation functions are Relu, Softmax, linear, and Sigmoid. The activation

function [42] is a mathematical “gate” in between the input feeding the current neuron and

its output going to the next layer as shown in fig 4.16.

Figure 4.16: Activiation Layer
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4.5.3.3 Max Pooling Layer

The pooling layer is mainly used to reduce the image size (Width and Height) [43] as

shown in figure 4.17

Figure 4.17: pooling Layer

4.5.3.4 CNN Architectures

CNN is a subset of deep learning techniques and has become dominant in most computer

vision tasks. It is composed of several layers which are the input layer, an output layer, and

various hidden layers. Some of these layers are convolution layers, pooling layers, and fully

connected layers. There are different architectures in CNN, 16 different architectures were

applied in the proposed system as shown in table 4.1 and 4.5.3.4.



Chapter 4. Software Design Document 86

Table 4.1: Comparison between different CNN Architectures

Model Layers Activation
function

Input size Convolution ker-
nel size

Innovative point

ResNet
[44]

18 layers RelU 224x224x3 ResNet initial
convolution: 7x7.
Resnet 50 and
101: 1x1, 3x3 and
1x1.
ResNet 18: 3x3

ResNet overcomes degrada-
tion and vanishing gradient
problems residual blocks that
increase the number of hid-
den layers. The core idea of
ResNet is introducing “iden-
tity shortcut connection” that
skips one or more layers

50 Layers
101 Lay-
ers

VGG [45] 16 layers ReLU
non-linear

224x224x3 VGG: 3x3 This network uses only 3x3
convolutional layers stacked
on top of each other in in-
creasing depth. VGG im-
proves AlexNet by replacing
large kernel-sized

19 layers

SqueezeNet
[46]

18 layers RelU 227x227x3 SqueezeNet: 1x1
and 3x3

SqueezeNet goal was to cre-
ate a small neural network
with fewer parameters. It was
able to achieve a 50X reduc-
tion in model size compared
to AlexNet. SqueezeNet has
the advantage of fire module,
which uses fewer filters to de-
crease the number of parame-
ters

DenseNet
[47]

201 lay-
ers

ReLU 224x224x3 DenseNet: 7x7 In DenseNet, the feature-
maps of all preceding layers
are used as inputs, and its
feature-maps are used as in-
puts into all subsequent lay-
ers. DenseNet alleviate the
vanishing gradient problem
and reduce the number of pa-
rameters

AlexNet
[48]

8 layers ReLU
non-linear

227x227x3 Alexnet: 11x11,
5x5 and 1x1

AlexNet has a large number of
filters to perform the convolu-
tion operation of sizes 11x11,
5x5 and 3x3
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GoogleNet
[49]

22 layers ReLU 224x224x3GoogleNet: 5x5,
3x3 and 1x1

GoogleNet increases the
depth of the network and
gains a higher performance
level. It is based on the
concept of the inception
module, it is the collection of
convolution and pooling oper-
ation performed in a parallel
manner so that features can
be extracted using different
scales

Mobilenetv2
[50]

54 layers ReLU6 224x224x3Mobilenetv2:
1x1, 3x3

Mobilenetv2 improves the
performance of mobile models
on multiple tasks. Mo-
bilenetv2 is based on an
inverted residual structure

Xception
[51]

71 layers ReLU 299x299x3Xception:
1x1,3x3

Xception involves Depthwise
Separable Convolutions, it is
supposed to be more efficient
than classical convolution in
terms of computation time.
Xception relies on Shortcuts
between Convolution blocks

Inceptionv3
[52]

48 layers ReLU 299x299x3Inceptionv3: 3x3 In inceptionv3, computational
efficiency and fewer parame-
ters are realized

ShuffleNet
[53]

RelU 224x224x3Shufflenet:
1x1,3x3

Shufflenet aims to explore a
highly efficient architecture
specially designed for limited
computing ranges. Shufflenet
allows more feature map chan-
nels and it is especially criti-
cal to the performance of very
small networks. ShuffleNet
achieves 13x actual speedup
over AlexNet while maintain-
ing comparable accuracy
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4.5.4 Object detecting

In our proposed approach, vision.CascadeObjectDetector were applied for object detec-

tion. The objects are detected by applying a sliding window over the image. A cascade

classifier is then used by the detector to determine if the window contains the object of

interest. The window size for object detection varies on different scales. Cascade classifier

consists of stages, where each stage is an ensemble of weak learners. The weak learners

are simple classifiers called decision stumps. Each stage is trained using a technique called

boosting. To converts, weak learners, to strong learners and combine weak learners to form

a strong rule.

A decision stump is a machine learning model consisting of a one-level decision tree,

with one root which is immediately connected to its nodes. A decision stump makes a

prediction based on the value of just a single input feature. It is known as weak leaner as

it can make a lot of mistakes if there is crossover. Sometimes they are also called 1-rules of

base learners. Depending on the type of the input feature, for nominal features, one may

build a stump which contains a leaf for each possible feature value or a stump with the two

leaves, one of which corresponds to some chosen category, and the other leaf to all the other

categories. It is a very simple decision tree, and also easy algorithm.[54]

So we used boosting technique to converts weak learners to strong learners and combines

weak learners to form a strong rule. There are three types of boosting Algorithms which

are Adaptive Boosting Algorithm (AdaBoost), Gradient Boosting algorithm and XG Boost

algorithm [55].

How Boosting Algorithms Works? Boosting Algorithms combine each weak learner to

create one strong prediction rule. Base Learning algorithm is applied to identify the weak

rule using the iteration process. Weak rules are combined after some iterations to create

one single prediction rule. To choose the right distribution:

• Each distribution is combined by base learning algorithm, to apply equal weight

to each distribution.

• We pay high attention to that prediction error if any prediction occurs during

the first base learning algorithm.

• Step 2 is repeated until the limit of Base Learning algorithm has been reached

or high accuracy.

• Finally, all the weak learner are combined to create one strong prediction rule.
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Figure 4.18: Boosting Algorithm

Cascade classifier training requires a set of positive and negative samples. Negatives

samples indicate that an object was not found and the detector moves the window to the

next pixel. While positive samples indicate that an object was found and the detector passes

the region to the next stage. TrainCascadeObjectDetector is then applied to determine the

number of positive samples to use for training each stage. The trainCascadeObjectDetector

supports two types of features Haar and HOG features.

Haar cascade is a machine learning based approach. Positive and negative images used

to train cascade function. Cascade function is then applied to detect object in other images.

The algorithm consists of 4 stages:[56]

• Haar Feature Selection often applied for face detection as it works well for fine-

scale textures representation. It considers adjacent rectangular regions at a
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particular location in a detection window, pixel intensities in each region are

summed up and the difference between these sums is then calculated

• Creating integral images applied to make this super-fast.[57]

• Adaboost Training

Adaptive Boosting Algorithm (AdaBoost) selects the best features and the clas-

sifiers that use them are trained. A strong learner is created by combining a

group of weak learner base on weightage. It gives equal weight to each data set

and starts predicting that data set in the first iteration. If incorrect prediction

occurs it gives high weight to that observation. Adaptive boosting repeats this

procedure in the next iteration phase and continue until the accuracy has been

achieved. Then combines this to create a strong prediction.

• Cascading Classifiers

Histogram of oriented gradients (HOG) is a feature descriptor that is applied for object

detection such as people and cars in computer vision and image processing techniques. The

occurrences of gradient orientation are counted in localized portions of an image - detection

window or region of interest (ROI). Hog features are useful for capturing the geometric

description of an object.

The algorithm stages:[58]

• Preprocessing

The image is resized by having some fixed aspect ratio or some fixed size of an

image.

• Calculate the gradient images

The horizontal and vertical gradients of an image are calculated. Then, the

gradient magnitude by both horizontal and vertical gradients are calculated.

• Calculate the HOG 1- The image is divided into small connected regions called

cells. histogram of oriented gradients is then computed for each cell.

2- Each cell is discretized into angular bins.

3- Each cell’s pixel contributes a weighted gradient to its corresponding angular

bin.

4- Groups of adjacent cells are considered as spatial regions called blocks. The

grouping of cells into a block is the basis for grouping and normalization of

histograms.
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5- The block histogram is represented by a normalized group of histograms. The

set of these block histograms represents the descriptor.

• Adaboost Training

• Cascading Classifiers

Figure 4.19: HOG Algorithm

Hog features are improved by applying ”MinSize” and ”Threshold” to make detection

more accurate. Minsize is the smallest object detected and is 63x279, while the threshold

value controls the accuracy and speed for classifying image subregions as either objects or

nonobjects to speed up the performance at the risk of missing true detections, increase this

threshold.
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4.5.5 Tracking

In the tracking phase, a Vision.PointTracker is applied to tracks set of points by using

the Kanade-Lucas-Tomasi (KLT) algorithm. The KLT algorithm is used for tracking an

image patch. The point tracker is applied for object tracking in videos. The implementation

of the point tracker using the KLT algorithm uses some features. The features computed for

this stage are a combination between the Number Pyramid Levels and Forward-backward

error threshold, Size of the neighborhood, and the Maximum number of search iterations.

In the number pyramid levels feature, we study the effect of different levels of the Pyramid

(L=1,2 and 3) as shown in figure 4.20. Increasing the number of levels allows the algorithm

to handle the largest displacements between frames.

Figure 4.20: Pyramids Levels

In the Forward-backward error threshold, each point is tracked from the previous frame

to the current frame, as shown in figure 4.21. The bidirectional error is then calculated.

This value is the distance in pixels from the original location of the points to the final

location after the backward tracking. The value ranges from 0 to 3.

Figure 4.21: Forward-backward error threshold
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In the size of the neighborhood feature, blockSize is determined by two elements, height,

and width. The block size takes the minimum value [5,5], and increasing the block size

increases the computation time. Height and width must be odd values.

In the Maximum number of search iterations, the iteration ranges between 10 to 50. An

iterative search is performed using the KLT algorithm, it performs an iterative search for

the new location of each point until convergence.

The tracking process is them initialized to specify the initial location of points and video

frame. DetectMinEigenFeatures is then applied by using minimum eigenvalue algorithm to

detect corners and return cornerPoints object. Eigenvalues help to Find Corner Points.

estimateGeometricTransform is then applied to determine the transformation between

the point locations in the previous and current frames, as shown in figure 4.22. A geometric

transformation is a function whose domain and range are sets of points.

Figure 4.22: Geometric Transformation For Image

After applying fish tracking, fish velocity is then calculated to help in the expectation

of fish behavior.The velocity is calculated my multiplying the distance of centroids between

previous frame and current frame. This is done by getting the video frame rate (frame/sec-

ond), the video scale (meter/pixel). This is defined in equation 4.7.

√∑
((newpoint− oldPoints)2 ∗ FrameRate ∗ scale (4.7)

pixels

frame
∗ frame

seconds
∗ meter
pixels

(4.8)
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4.5.6 Hardware

This section introduces the interface circuit that connects reality and computer recogni-

tion systems. The interface circuit consists of three main parts. The first part is a Raspberry

pi camera which is used to capture fish movements underwater. It is a professional camera

with a high-resolution day/night vision, with a fisheye lens for a wider field of view and

an adjustable focal lens. It can produce high definition (HD) videos. The second part is

PH and Temperate sensors which are used to examine water quality. PH is a measure of

acidity or alkalinity of a solution. The pH scale ranges from 0 to 14. Temperature sensors

measure temperatures in wet environments with an advantage over linear temperature sen-

sors calibrated in Kelvin. finally, the last part is Raspberry Pi 3 kit which is used to get

the sensor’s measurements and acquired fish captures. It has built-in (onboard) WiFi and

Bluetooth.

As shown in fig 4.23, Raspberry pi gets the sensors’ measurements and acquired fish

captures from the camera and passes it to the computer system. The connection could be

through Ethernet cable or wifi. Ethernet is for short-distance connection, while wifi for

long-distance connection. Matlab support package for raspberry pi is a library in MatLab

that receives these inputs from raspberry pi and passes them to MYSQL database server.

MySQL is a relational database management system that runs on a computer. MYSQL

database sends this data to firebase using PHP, ajax, and javascript code. Firebase is used

to build web and android applications. Users can receive notifications using firebase cloud

messaging (FCM) through web and android applications. FCM is a notification service that

enables developers to send notifications to their users.
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Figure 4.23: Hardware connection

The following figure 4.24 represents the connection between temperature and PH sensors

on Raspberry pi 3. The temperature and PH sensors require 3 connections to the Raspberry

Pi which are: 5V/3.3 voltages, ground (GND), and General Purpose Input Output (GPIO).

The Raspberry Pi has Two 5v pins and Two 3v3 pins. Ground pins are electrically connected

in raspberry pi so it doesn’t matter which one to use. Raspberry Pi contains 40 pins GPIO

that are divided into two rows. Temperature sensor is a digital sensor that is connected to

3.3V pin which is PIN one in figure 4.24. The output pin of the sensor GPIO3 pin which is

PIN five. The GPIO of the temperature sensor is then connected to the GND pin which is

PIN 25. PH sensors is analog sensor that is connected to 5V pin which is PIN two in figure

4.24. The output pin of the sensor GPIO2 and GPIO22 pins which are PINS four and 15.

The GPIO of the PH sensor is then connected to the GND pin which is PIN 14.
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Figure 4.24: Raspberry pi connection with sensors

The following figure 4.25 represents the connection between Raspberri pi camera on

Raspberry pi 3.

Figure 4.25: Raspberry pi connection with camera



Chapter 4. Software Design Document 97

4.6 Human Interface Design

4.6.1 Overview of User Interface

Our system user interface is very usable and clear as shown in figures 4.26 and 4.27.

You can login whether you are an admin or user. Once logged in, He/She will be directed

to the homepage menu.

• Sign up view: This interface allows new users access the application

• Sign in: This interface is meant for the users to login the application.

• The Home Page is an interface that manages all the menus inside our system.

The Home Page will provide 4 modules which are:

• Edit Profile: This interface allows each user to edit his personal data

• Profile: This interface allows users to show all his personal data

• User module: This interface to manage any user data.

• More List: This will include all managements of farms and hardware.
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4.6.2 Screen Images

Figure 4.26: Admin Screens
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Figure 4.27: User Screens

4.7 Requirements Matrix
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Table 4.2: Requirements Matrix

ReqID Reqtype Requirement
Name

Requirement Descrip-
tion

Status Implemented
In

3.1 Required Register The user registers with
his/her information to
create an account

Completed Android App

3.2 Required Login user/Admin can login
with his/her username
and password into
his/her account

Completed Android App

3.3 Required Signout user/Admin sign out
from their system

Completed Android App

3.4 Required delete User the admin can remove
user from system

Completed Android App

3.5 Required listing all users the admin can list all
users in system

Completed Android App

3.6 Required View Readings User can view sensors
readings of his fish farm

completed Android App

3.7 Required Show notifica-
tion

user can show notifica-
tion when there is any
improper change

completed Android App

3.8 Required Adding fish
farm

The admin adds farm to
specific user

completed Android App

3.9 Required Edit farm The admin edit farm de-
tails in the system

completed Android App

3.10 Required Deleting farm The Admin deletes farm
from the system

completed Android App

3.11 Required listing all
farms

The Admin lists all the
farms found in the sys-
tem

completed Android App

3.12 Required Adding hard-
ware

The admin adds new
hardware to the system

completed Android App

3.13 Required Edit hardware The admin edit hard-
ware details in the sys-
tem

completed Android App

3.14 Required Deleting hard-
ware

The Admin deletes
hardware from the
system

completed Android App

3.15 Required listing all
hardware

The Admin lists all the
hardware found in the
system

completed Android App

3.16 Required Take video This function is used to
take video from camera

Completed Hardware
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Table 4.3: Requirements Matrix

ReqID Reqtype Requirement
Name

Requirement Descrip-
tion

Status Implemented
In

3.17 Required Get PH sensor
reading

Get Reading from PH
sensor and pass it in
Raspberry pi

completed Hardware

3.18 Required Get Temper-
ature sensor
reading

Get Reading from Tem-
perature sensor and
pass it in Rasp-berry pi

completed Hardware

3.19 Required Send Notifica-
tion

Notification will be sent
to the user through
mobile application to
notify him/her that
he/she has improper
changes in farm envi-
ronment or detected
infections

completed Hardware

3.20 Required Upload PH
sensor read-
ings to firebase

This function is for col-
lecting PH sensor read-
ings from rasp-berry pi
and uploading it to fire-
base

completed Hardware

3.21 Required Upload tem-
perature
sensor to
firebase

This function is for
collecting temperature
sensor readings and up-
loading it to firebase

completed Hardware

3.22 Required Listing all sen-
sors readings

This function is for list-
ing all sensors readings
foundin the system

completed Hardware

3.23 Required Data augmen-
tation

This function is used to
increase the diversity of
images that is available
in data-set for training
models

Completed Tracking
and disease
detection

3.24 Required Create XML
file This XML

file contain data which
is extracted from video
in the dataset to be
compared with frames
taken from video

Completed Tracking
and disease
detection

3.25 Required Draw border This function is used to
add border on detected
fish

Completed Tracking
and disease
detection
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Table 4.4: Requirements Matrix

ReqID Reqtype Requirement
Name

Requirement Descrip-
tion

Status Implemented
In

3.26 Required Count Number
of detected fish

This function is used
to count borders of de-
tected fish

Completed Tracking
and disease
detection

3.27 Required Video segmen-
tation

This function is used di-
vide video into frames
then Convert frames to
YCBCR then change
values of YCBCR

Completed Tracking
and disease
detection

3.28 Required Point Tracker This function is used to
track a set of points

Completed Tracking
and disease
detection

3.29 Required Velocity and
acceleration

This function is used
to calculate velocity and
acceleration

Completed Tracking
and disease
detection

3.30 Required Estimate Geo-
metric Trans-
formation

This function is applied
to find the transforma-
tion matrix

Completed Tracking
and disease
detection

3.31 Required Detect Min-
imum Eigen
Features

This function detects
corners and return cor-
nerPoints.object

Completed Tracking
and disease
detection

3.32 Required Transform
Points For-
ward

This function applies
the forward transfor-
mation of2-D geometric
transformation

Completed Tracking
and disease
detection

3.33 Required Histogram
Based Tracker

This function is used to
identify the tracked ob-
ject

Completed Tracking
and disease
detection

3.34 Required Convert to
YCBCR

Converts RGB image to
YCBCR

Completed Segmentation

3.35 Required Convert to
XYZ

Converts RGB image to
XYZ

Completed Segmentation

3.36 Required Resize image Image will be resized to
cover the part that will
be classified

Completed Pre-processing

3.37 Required Apply Gaus-
sian distribu-
tion

It applies the predefined
Gaussian filter on the
image

Completed Segmentation

3.38 Required Calculate
Mean of
CB/CR

It Calculates the Mean
of CB/CR

Completed Segmentation



Chapter 4. Software Design Document 103

Table 4.5: Requirements Matrix

ReqID Reqtype Requirement
Name

Requirement Descrip-
tion

Status Implemented
In

3.39 Required Calculate Co-
variance

Calculate Co-variance
of ycbcr

Completed Segmentation

3.40 Required Calculate
Mean of f X/Y

It Calculates the Mean
of X/Y

Completed Segmentation

3.41 Required Calculate Co-
variance of
XYZ

It Calculates the co-
variance

Completed Segmentation

3.42 Required Apply Gaus-
sian distri-
bution of
xyz

t applies the predefined
Gaussian filter on the
image

Completed Segmentation

3.43 Required Adaptive
threshold

It applies the thresh-
old on Gaussian distri-
bution model result

Completed Segmentation

3.44 Required Crop It crops diseased area Completed Segmentation

3.45 Required Convert to
gray scale

Converts RGB image to
gray scale

Completed Segmentation

3.46 Required GLDM It gets the probability
density function

Completed Segmentation

3.47 Required CNN Classifier this function is used to
train data and integrate
with it with features to
classify new inputs of
images

Completed Classification
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Chapter 5

Evaluation

5.1 Introduction

After the system’s implementation finished, where all the systems’ functionalities are

implemented, the system should pass through the evaluation process. In this phase, the

system is tested through many experiments. Multiple experiments were plotted to test out

the features associated with the system. Comparison between our system and traditional

methods is also available.

5.2 Database

Our data-set includes images of fish with the three types of fish diseases, as shown is

Fig 5.1. These diseases are EUS, ICH and Columnaris. Deep learning technique is based

on large training dataset for the system to build up the identification knowledge, enough

data has to be provided as learning resources. Our data-set were collected from different

internet resources. However, the number of images collected is not large enough to train the

system. Therefore, we applied data augmentation [59] to increase our samples because the

collected images are not sufficient for training purpose. Augmentation was based on four

types of transformation, which increased the number of images to make the training dataset

sufficient. It was based on zooming, shearing, rotating, and applying preprocessing function.

Our collected data-set include 15 images per disease. After applying data augmentation,

samples are increased to 800 images per disease. For training and testing the CNN, we
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divided them into two groups; 550 images were used as training samples per disease, and

the remaining samples were used for testing.

Figure 5.1: Infection Diseases

5.3 Comparative results of similar systems

Table 5.1, summarize comparative results with similar systems. EUS disease was recog-

nized by two different approaches [8],[9]. Diseased regions were extracted by combining some

features [10] that resulted in achieving more convenient and rapid diagnosis for diseased fish.

CNN technique were applied to for fish species recognition and achieved satisfactory results

[11] [13][14]. Our proposed method outperformed the similar system, by diagnosing three

different diseases with high accuracy.

Table 5.1: Comparative results of similar systems

Systems Recognition prob-
lem

Features
extraction

Classifier Recognition
rate

[8] EUS disease FAST Neural Net-
work

86%

[9] EUS disease PCA Mophological
open

90%

[10] white spot, tri-
chodina and
scuticociliate

polar co-
ordinates,
geometrical
features

PCA 90%

[23] Fish species Artificial neu-
ral networks
(ANN)

ANN 99%

[15] Fish species CNN CNN 95%

[14] Fish species CNN CNN 96.29%

[11] Fish detection CNN YOLO 93%

Proposed
Approach

EUS, ICH and
Columnaris

AlexNet AlexNet 99.0446%
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5.4 Segmentation

For segmentation, we build the Gaussian model on XYZ, LAB and YCBCR color spaces.

Table 5.2 and figures 5.2, 5.3 and 5.4 shows the effect of segmentation after applying it on

3 different diseases in 3 different color spaces. We found that EUS achieved good results in

LAB color space, while ICH and Columnaris achieved good results in XYZ color space.

Table 5.2: Segmentation Experiment on different color spaces

Color Spaces EUS ICH Columnaris

XYZ 45.90 70% 61%

YCBCR 49% 67.50% 44%

LAB 65% 39.40% 10%

Figure 5.2: ICH diseased fish in LAB, YCBCR and XYZ color space

Figure 5.3: EUS diseased fish in LAB, YCBCR and XYZ color space
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Figure 5.4: Columnaris diseased fish in XYZ and YCBCR color space

5.5 Classification process

In our experiments, we applied different CNN architectures in detecting diseases and

normal fish . We compared between the performance of the ResNet18, ResNet50, ResNet101,

Alex-Net, VGG16, VGG19, mobilenetv2, Xception, Inceptionresnetv2, Shufflenet, Nasnet-

mobile, Nasnetlarge, Squeezenet, Inceptionv3, Densenet201, Googlenet CNN architectures.

Each architecture is trained on 2160 samples, and finally tested on 314 samples. Accuracy

is measured at three different learning rates 0.1, 0.01 and 0.001. Experiments were achieved

using three different color spaces: RGB, YCBCR and XYZ, as shown in figures 5.5, 5.6

and 5.7. The figures showed that AlexNet achieved best testing accuracy at learning rate

0.01 in the XYZ color space. AlexNet at learning rate 0.001 has the same testing accuracy

of 0.01 but with more training time in XYZ color space. Table 5.3 shows that ResNet101

architecture achieved the highest training accuracy at learning rate 0.001 in the RGB color

space. Densenet201 out-performed the other architectures in time at learning rate 0.001 in

RGB color space. ResNet18 performed the worst architecture in terms of time at learning

rate 0.1 in RGB color space.
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Figure 5.5: Achieved testing accuracy of different CNN architecture in RGB color space

Figure 5.6: Achieved testing accuracy of different CNN architecture in YCBCR color space
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Figure 5.7: Achieved testing accuracy of different CNN architecture in XYZ color space

Table 5.3 and figure 5.5 shows experimental result in RGB color space in different

learning rates. Different CNN architectures were applied to RGB color space. Densenet201

architecture achieved best testing accuracy in RGB at learning rate 0.1, as shown in figure

5.5, while ResNet101 achieved the highest training accuracy at learning rate 0.001 and

Densenet201 out-performed other architectures in training time at learning rate 0.001 as

shown in table 5.3.

Table 5.3 and figure 5.6 shows experimental result in YCBCR color space in different

learning rates. Different CNN architectures were applied to YCBCR color space. ResNet101

achieved best testing accuracy in YCBCR at learning rate 0.1 and 0.01 as shown in fig 5.6.

Shufflenet out-performed other architectures in training time at learning rate 0.001 as shown

in table 5.3.

Table 5.3 and figure 5.7 shows experimental result in XYZ color space in different

learning rates. Different CNN architectures were applied to XYZ color space. AlexNet

achieved highest testing accuracy in XYZ and in all color spaces at learning rate 0.01.

Densenet201 out-performed all other architectures in all different color spaces in training

time at learning rate 0.001 as shown in table 5.3.
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Table 5.3: Achieved training time and Accuracy of Cnn Architectures
Cell format(approximated time(min)),Training Accuracy(%)

Cnn
Architectures

RGB
(0.001)

RGB
(0.01)

RGB
(0.1)

YCBCR
(0.001)

YCBCR
(0.01)

YCBCR
(0.1)

XYZ
(0.001)

XYZ
(0.01)

XYZ
(0.1)

ResNet18 16.48,
80%

14.43,
50%

24.4,
60%

12.59,
60%

12.37
,50%

12.37,
50%

17.1,
70%

17.9,
50%

15.31,
50%

ResNet50 18.35,
70%

17.9,
60%

14.59,
60%

14.53,
60%

14.29,
50%

14.53,
50%

24.20,
50%

15.53,
50%

15.52,
50%

ResNet101 16.46,
80%

14.49,
60%

16.29,
50%

13.1,
50%

14.53,
50%

13.5,
50%

15.26,
50%

16.34,
50%

19.31,
50%

Alex-Net 11.5,
60%

7.40,
50%

9.33,
60%

7.27,
60%

9.41,
50%

9.41,
50%

8.34,
50%

7.51,
50%

7.53,
60%

VGG16 14.0,
50%

14.30,
60%

14.35,
50%

15.33,
50%

18.2,
40%

18.20,
50%

16.15,
60%

16.0,
50%

15.35,
50

VGG19 14.5,
50%

13.55,
60%

14.9,
50%

21.46,
50%

17.47,
60%

13.55,
60%

16.23,
50%

15.3,
50%

15.22,
50%

Mobilenetv2 13.34,
50%

7.3,
60%

7.58,
50%

16.6,
60%

7.1,
40%

7.2,
40%

10.20,
60%

9.13,
60%

9.49,
60%

Xception 12.49,
50%

12.4,
50%

11.25,
50%

11.6,
50%

15.9,
60%

13.42,
50%

12.53,
50%

12.13,
50%

12.16,
60%

Inception
resnetv2

11.14,
50%

16.10,
60%

11.56,
60%

11.54,
60%

11.28,
50%

11.32,
60%

15.11,
50%

11.59,
50%

12.17,
60%

Shufflenet 7.44,
50%

7.33,
60%

7.28,
50%

6.55,
60%

7.3,
50%

7.56,
50%

21.28,
50%

19.44,
60%

14057,
60%

Nasnetmobile 9.40,
50%

7.33,
50%

7.27,
60%

7.11,
50%

7.17,
50%

8.2,
60%

15.47,
60%

15.26,
60%

15.4,
60%

Nasnetlarge 13.16,
60%

13.46,
50%

15.20,
50%

14.0,
50%

14.23,
60%

13.48,
60%

14.36,
50%

14.35,
60%

14.39,
60%

Squeezenet 7.12,
50%

7.45,
60%

7.45,
50%

7.12,
50%

7.28,
50%

8.5,
50%

8.34,
60%

10.9,
50%

7.57,
50%

Inceptionv3 15.17,
50%

13.7,
40%

11.50,
50%

15.37,
60%

11.17,
60%

11.22,
50%

13.8,
50%

15.54,
50%

13.17,
50%

Densenet201 6.53,
60%

13.12,
50%

7.5,
60%

16.15,
60%

7.1,
50%

9.9,
60%

12.31,
60%

9.53,
50%

7.41,
60%

Googlenet 14.8,
60%

14.4,
50%

14.30,
50%

14.0,
50%

14.16,
50%

15.54,
50%

20.5,
50%

16.28,
50

19.23,
50%

In table 5.3 1st,2nd and 3rd column is for RGB color space with learning rates 0.001,0.01,0.1

respectively. 4th, 5th and 6th column in for YCBCR color space with learning rates 0.001,

0.01 and 0.1 respectively. The last 3 columns are for XYZ color space with learning rates

0.001,0.01,0.1. The bold numbers in the table are for highest records. It is shown that
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ResNet101 has the highest training accuracy while, DensNet201 has the lowest training

time compared to other CNN architectures.

Table 5.4: Highest achieved results when applying different CNN architectures

CNN Architec-
ture

Colorspace-
Learning rate

Testing accuracy Training
accuracy

Traning time

AlexNet XYZ-0.01 99.0446% 50% 7min,51sec

DenseNet-201 RGB-0.001 94.9045% 60% 6min,53sec

ResNet101 RGB-0.001 92.3567% 80% 16min,46sec

In table 5.4, we can analyze that AlexNet achieved highest result in testing accuracy at

learning rate 0.01 in XYZ color space. While in training accuracy ResNet101 outperformed

other architectures at learning rate 0.001 in the RGB color space. Finally, DensNet-201

achieved in getting the lowest training time at learning rate 0.001 in RGB color space.

5.6 Object Detection

In our experiments, the HOG feature outperformed haar feature, as shown in figure

5.8 and 5.9. The HOG features have achieved good results because they have successfully

detected the overall fish body. HOG features are often used to detect objects such as cars.

They are useful for capturing the overall shape of an object, while haar features are often

used to detect faces because they work well for representing fine-scale textures. As shown

in figure 5.8 and 5.9, HOG features are able to detect the overall fish body and nearby fish,

but the distant fish was not detected. On the other hand, the Haar features detect many

things that are not a fish and the surrounding boxes drawn do not cover the entire fish.
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Figure 5.8: Detected fish by applying HOG cascade feature

Figure 5.9: Detected fish by applying Haar cascade feature

5.7 Tracking

In the tracking phase, Vision.pointTracker is applied by using the Kanade-Lucas-Tomasi

(KLT) algorithm. In the number pyramid levels feature, We study the effect of different

levels of the Pyramid (L=1,2 and 3). We used level 3 as it achieved the best result. In the

size of the neighborhood feature, increasing the block size increases the computation time.

The block size we used as it achieved good results in [31,31]. In the Maximum number of

search iterations, the iteration ranges between 10 to 50. Increasing the number of iteration

effect badly on the accuracy of detection and fish tracking. The value we used is 30 iterations

as it gives us the best results.
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The Estimate Geometric Transformation is then applied to determine the transfor-

mation between the point locations in the previous and current frames, as shown in the

following figure

Figure 5.10: Tracked fish before applying estimateGeometricTransform

Figure 5.11: Tracked fish after applying estimateGeometricTransform

After applying fish tracking, fish velocity is then calculated to help in the expectation

of fish behavior. This is defined in equation 5.1.
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√∑
((newpoint− oldPoints)2 ∗ FrameRate ∗ scale (5.1)

pixels

frame
∗ frame

seconds
∗ meter
pixels

(5.2)
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Chapter 6

Conclusion

In this document, we have presented the design, development, and evaluation of au-

tomatic analysis of fish farm environment to detect fish disease and track fish movements

using machine learning and image processing techniques. The system mainly detects three

different types of fish diseases automatically. Different CNN architectures were applied to

our collected data-set images in different color spaces. The Alexnet architecture achieved

superior results in the XYZ color space. For fish tracking, we applied KlT algorithm and

the velocity are then calculated to help in fish behavior expectation. Our system also imple-

mented the Raspberry hardware circuit to read temperature and pH sensor measurements,

and to send notifications to users’ mobile phones.

6.1 Future work

Our future work is to improvise our tracking algorithm and to work on more features

besides velocity that help in expectation abnormal behavior. We are also planning to

increase our dataset and including more fish diseases.
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