
Final Thesis Document for

iKarate: Improving Karate Kata

by

Bassel Emad, Omar Atef, Yehya Shams, Ahmed El-Kerdany

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Bachelor of computer science

in

Department of Computer Science

in the

Faculty of Computer Science

of the

Misr International University, EGYPT

Thesis advisor:
Dr. Ayman Ezzat, Dr. Ayman Nabil,

and Eng. Nada Ayman

(July 2020)

ii

Abstract

Karate is a complicated sport; practiced using hands and feet to deliver and block

strikes. Karate moves must be done in a certain way and is difficult to master.

Because of the growing of interest in this sport over the past few years, attempts were

made to improve the experience and the quality of training through different methods.

There are multiple issues to consider for building a Karate smart coaching system, such

as: hardware utilization, data stream analysis, and generating an accurate report based

on the users’ movements. In this document we propose a system that will capture the

players’ moves using a virtual recognition device equipped with an IR (Infrared) camera,

perform analysis on the data and pre-process it for classification. The System will classify

the output using F-DTW (Fast Dynamic Time Warping) and then present the feedback

containing the analysis results. This application’s performance and results were tested

using groups of professional and unprofessional candidates in karate to evaluate how the

system would behave with each person and verify the effectiveness of methods used. The

system classifies each move and its most known mistakes with an accuracy of 91.07%.

iii

Acknowledgments

We sincerely like to thank Dr. Ayman Ateya in the faculty of Computer Science at

Modern Science and Arts University for his effort and playing a big role in the team, pledg-

ing to us his experience and knowledge that led us to move forward, through following up

with every step and providing useful feedback that we needed and helped us reach our goal

with the project to what it is now. He was always available, welcoming every question and

answer them meticulously, and he has been with us with in every step in every phase of the

project providing outstanding support and the aid to compete.

We are thankful to Dr. Ashraf Abdelraouf in the faculty of Computer Science at Misr

International University for his incredible work in managing and tending to the whole fac-

ulty’s graduation projects, utilizing his experience and knowledge. He is always quick to step

up whenever an issue arises to cooperatively resolve it, executing well thought-out decisions.

We would like to show appreciation to Dr. Ayman Nabil for his undeniable impact

within every phase by giving us useful constructive feedback and the means to improve

our project. And providing us the financial support for publishing our work in multiple

conferences and journals.

We can’t deny the huge effort given by the dean of the faculty of Computer Science at

Misr International University Professor. Ayman Bahaa in developing our skill-set and ben-

eficial knowledge through the previous years, getting us prepared for the real world context.

Only he adds more appraisal in our work and for his on going work in further improving

the faculty’s worth and essence.

Last but not least we thank Eng. Nada Shorim for her outstanding passion in assisting

and supporting us through the journey of our project. Not only she gave us her knowledge

and experience, but she aided us by following-up, leaving comment and recommendations

to achieve the best version of our project.

Finally, Al-Ahly sporting club and its performers sponsored this work, we would like to

thank all the performers who have helped in this approach.

1

Contents

Abstract ii

Acknowledgments iii

List of Tables 4

List of Figures 5

1 Introduction 7
1.1 Introduction . 7
1.2 Motivation . 7
1.3 Problem Definitions . 8
1.4 Project Description . 8

1.4.1 Objective . 8
1.4.2 Scope . 8
1.4.3 Project Overview . 9

2 iKarate: Improving Karate Kata 11
2.1 Similar System Information . 11

2.1.1 Similar System Description . 14
2.1.2 Comparison with Proposed Project 14
2.1.3 Screen Shots from previous systems 15

2.2 Project Management and Deliverables . 16
2.2.1 Tasks and Time Plan . 16
2.2.2 Budget and Resource Costs . 16
2.2.3 Supportive Documents . 17

3 System Requirements Specifications 18
3.1 Introduction . 18

3.1.1 Purpose . 18
3.1.2 Scope . 18
3.1.3 Overview . 19
3.1.4 Business Context . 19

3.2 General Description . 20

CONTENTS 2

3.2.1 Product Functions . 20
3.2.2 Product Context . 20
3.2.3 Similar System Information . 21
3.2.4 User Characteristics . 22
3.2.5 User Problem Statement . 23
3.2.6 User Objectives . 23
3.2.7 General Constraints . 23

3.3 Functional Requirements . 24
3.3.1 Pre-processing . 24
3.3.2 Processing . 27
3.3.3 Interface . 30
3.3.4 Report . 34

3.4 Interface Requirements . 37
3.4.1 User Interfaces . 37
3.4.2 Hardware Interfaces . 40
3.4.3 API . 40

3.5 Performance Requirements . 41
3.6 Design Constraints . 41

3.6.1 Hardware Limitations . 41
3.7 Other non-functional attributes . 41

3.7.1 Security . 41
3.7.2 Reliability . 41
3.7.3 Maintainability . 41
3.7.4 Usability . 41
3.7.5 Availability . 42
3.7.6 Scalability . 42

3.8 Preliminary Object-Oriented Domain Analysis 42
3.8.1 Database Diagram . 43

3.9 Operational Scenarios . 44
3.10 Preliminary Schedule Adjusted . 46
3.11 Preliminary Budget Adjusted . 46
3.12 Appendices . 47

3.12.1 Collected material . 47

4 Software Design Document 48
4.1 Introduction . 48

4.1.1 Purpose . 48
4.1.2 Scope . 48
4.1.3 Overview . 49

4.2 System Architecture . 50
4.2.1 Architectural Design . 50
4.2.2 Decomposition Description . 52
4.2.3 Design Rationale . 63

4.3 Data Design . 64
4.3.1 Data Description . 64

CONTENTS 3

4.3.2 Data Dictionary . 64
4.4 Component Design . 65

4.4.1 Input . 65
4.4.2 Pre-processing . 65
4.4.3 Segmentation . 66
4.4.4 Classification . 66
4.4.5 Output . 67

4.5 Human Interface Design . 68
4.5.1 Overview of User Interface . 68
4.5.2 Screen Images . 69
4.5.3 Screen Objects and Actions . 72

4.6 Requirements Matrix . 73

5 Evaluation 74
5.1 Experiments and results . 76

5.1.1 Usability Study . 77
5.2 Motion Capture Hardware . 77
5.3 Data Pre-processing . 78

5.3.1 Segmentation . 78
5.3.2 Linear Interpolation . 79

5.4 Processing methods . 79
5.4.1 Fast-Dynamic Time Warping . 80
5.4.2 Other Algorithms . 80

6 Conclusion 83
6.1 Future directions . 84

Bibliography 86

4

List of Tables

3.1 Pre-Processing . 24
3.2 Interpolation . 25
3.3 Extrapolation . 25
3.4 Removing Outliers . 26
3.5 Segmentation . 26
3.6 Classify Movement . 27
3.7 Get Joints Data . 28
3.8 Store Data . 28
3.9 File Upload . 29
3.10 Check Notification . 30
3.11 CRUD Users . 31
3.12 Hashing User passwords . 31
3.13 Compare Hash . 32
3.14 Remove Player . 32
3.15 CRUD Comments . 33
3.16 Select Player . 33
3.17 View all Records . 34
3.18 Calculate Overall Score . 35
3.19 View Progress . 35
3.20 View Report . 36

5.1 F-DTW Movements Results . 75
5.2 Different classification algorithm comparison. 77
5.3 Usability Study . 82

5

List of Figures

1.1 System Overview . 10

2.1 Similar System [1] . 15
2.2 This System is taken from [2] . 15
2.3 This system is taken from [3] . 15
2.4 Tasks And Time Plan . 16
2.5 Data-Set 1/2 . 17
2.6 Data-Set 2/2 . 17

3.1 System Overview . 19
3.2 Context Diagram . 20
3.3 This System is taken from [2] . 21
3.4 This System is taken from [1] . 22
3.5 Motion Detection Window: Player’s Skeleton 37
3.6 Motion Detection Window . 38
3.7 Motion Detection Window: Start/Stop Recording Button 39
3.8 Motion Detection Window: System’s Feedback 40
3.9 Class Diagram . 42
3.10 Database Diagram . 43
3.11 Use Case Diagram . 44
3.12 Tasks And Time Plan . 46
3.13 Data-Set 1/2 . 47
3.14 Data-Set 2/2 . 47

4.1 Block Diagram . 49
4.2 Architecture Diagram . 50
4.3 Hardware Architecture Diagram . 52
4.4 Class Diagram . 53
4.5 Singleton Design Pattern . 54
4.6 Decorative Design Pattern . 55
4.7 Observer Design Pattern . 56
4.8 Activity Diagram . 57
4.9 Pre-Processing & Processing Sequence Diagram 58
4.10 View History Sequence Diagram . 59

LIST OF FIGURES 6

4.11 View Player’s Progress Sequence Diagram 60
4.12 Assign Players Sequence Diagram . 61
4.13 Log In Sequence Diagram . 62
4.14 Database Diagram . 64
4.15 Fast-DTW . 67
4.16 Movement Capture Interface . 69
4.17 Results Interface . 70
4.18 Report . 71

5.1 Overall Accuracies . 74
5.2 Setup . 76
5.3 before and after pre-processing . 79

7

Chapter 1

Introduction

1.1 Introduction

Karate moves are combination of successive moves. Kids nowadays may find difficulties

learning those moves at a young age, since the training may consist of a large number of

players, the trainer himself may not be able to focus on every detail of every player’s move,

which may result in taking more time for learning the move or to be precious to master it

or it may lead to learning that move in a wrong way from the beginning. The main goal of

this project is to capture the moves of the players, analyse those moves and give the players

a feedback to enhance their technique or alert them if they are playing in a wrong way.

1.2 Motivation

Despite the importance of the sports field and improving it, not many people focus on

working in the Karate sport, so as a team we saw a good opportunity to continue researching

in the Karate sport, by improving and adding some features that might make a difference.

We also found that kids playing Karate at the beginning don’t have the attention needed

from the coach who should focus on the little mistakes made by the kids.

Chapter 1. Introduction 8

1.3 Problem Definitions

There is the problem of the real-time feedback, giving the player a feedback on his/her

moves whether it was right or not in a couple of minutes is essential after he/she finishes

the move, the feedback should have high-accuracy. The feedback contains tips on how to

execute the move correctly. Moreover, each player has different body proportions than the

other players.

1.4 Project Description

Karate training assisting system that detects Karate moves and analyze them to detect

the mistakes and to present a feedback in an interface to the user, showing the recognized

moves and explaining whether there was a mistake or not in a certain position.

1.4.1 Objective

The project aims to improve Karate coaching with the assistance of motion capture

technologies and algorithms. And deliver a system that can be used to practice at home or

at a sports club

1.4.2 Scope

The system is designed to cover multiple things:

1. Help Karate players who don’t have Karate coaches.

2. Help Karate Players practice at home.

3. Assist Karate coaches.

4. Extract body position mistakes that could be hard to be noticed by a coach.

5. User data can be recorded and analyzed, thus improving the player’s experience

and training.

Chapter 1. Introduction 9

1.4.3 Project Overview

As shown in figure 1.1, the system consists of a Kinect connected to a computer that has

an internet connection. The player starts by logging in to his account, then calibrates his

positioning to the Kinect, so that the joints could be captured correctly. After everything is

set-up and the performer is prepared to perform the moves, the performer will click on the

start recording button so that the Kinect could start recording his movements by capturing

the frames then extracting the skeleton data from these frames to be saved in a CSV file.

After the performer finishes, the performer will click on the stop recording button. Then

the segmentation and the pre-processing phases will occur on the CSV file so it can be

forwarded to the processing stage. The processing will classify the movement using the

stream analysis. The stream analysis is where the segmented movements that the player

has performed is classified. After the processing is done, a class will be assigned to each

movement, then the results are sent to be stored in the database. The results are also

displayed briefly on the computer’s screen. It also can be shown in detail in a report which

contains all the performer’s information and also all the details of the movements that the

performer has done, such as the movement’s name, movement’s duration, movement’s score,

their performance so far. The detailed report could be personalized to show what the user

really needs.

Chapter 1. Introduction 10

Figure 1.1: System Overview

11

Chapter 2

iKarate: Improving Karate Kata

2.1 Similar System Information

• T. Hachaj, et. el in [4] proposed statistical comparison between Kinect 1 and

Kinect 2 recognition in some of the Karate movements. This research is done to

evaluate effectiveness of Kinect 1 and Kinect 2 for Karate motion recognition.

Their Motivation was different types of Kinect sensors, made them start this

research to find the best suited sensor for Karate. They had proved in all cases

that Kinect 2 is more reliable than Kinect 1 due to more accurate calculation

of legs joints positions. It is important to us to make it clear that Kinect 2 will

give us more accuracy and will improve our recognition rather than Kinect 1.

• T. Hachaj, et. el in [5] proposed evaluation and visualization technique for the

advanced human motion analysis. This paper is to evaluate the method for

comparison, analysis and visualization of similarities and differences between

3D trajectories of body joints in Karate movements. They were interested in

investigating what are the differences in the movements, due to imperfect imita-

tion problem. This paper is important since they touched an important problem

that might face us, which is imperfect imitation problem.

Chapter 2. iKarate: Improving Karate Kata 12

• E. Escobedo-Cardenas and G. Camara-Chave in [6] proposed an approach for

dynamic hand gesture recognition using Kinect. They wanted to Overcome the

problems of hand gesture recognition using Sensor and Video based tools. They

came up with better recognition compared to the methods that uses visual in-

formation only with 88.38% accuracy. Their approach can be used to improve

our accuracy and get the exact hand gestures, which could benefit our system.

• T. Hachaj, et. el in [7] proposed actions descriptions with maximally three key-

frames. Their aim was to make motion recognition in low-dimensional feature

space and selection of proper features to model a set of multiple human actions.

They were able to reach recognition rate of level of 88%. Their selection of

proper features set to model human actions in low-dimensional space could help

us prioritise our features selection for better recognition.

• P. Alborno, et. el in [8] proposed a method to compute the measurement of

Karate movement quality. Analysis of human full body movements to evalu-

ate movement qualities is an important problem. They reached a solution by

studying how much the limbs are synchronized during relevant motion phases.

They proved that there is a way to measure the quality of Karate movements,

that we can use to deliver a complete system.

• Y. Choubik and A. Mahmoudi in [9] was able to make a real-time human poses

classification technique. Poses recognition is important in many situations, and

their problem was to apply machine learning algorithms to classify real-time

poses. Finally, they were able to classify user’s poses whatever his size and his

position in the scene, which will help us to classify the pose, which is a part of

the Karate movements.

• N. T. Thanh, et. el in [2] made a program that applies the depth data of images

to human performance scoring system. Their aim was to make a standardized

modeling system that can be used around the world for Vietnamese Traditional

martial arts. They used Data analysis on the Kinect’s motion capture, which

will guide us.

Chapter 2. iKarate: Improving Karate Kata 13

• A. D. Calin, in [10] compared the efficiency of several classifiers, trained and

tested on a data-set obtained from Kinect v1 and v2. Their aim was to Evaluate

the accuracy of the two Kinect Sensors and Analyse the variation of the gesture

recognition accuracy of several classifiers. He reached an accuracy of 99.0874%

by Multilayer Perceptron and Kinect 2 data. This will help us in choosing our

data-set and the classifiers wisely.

• T. Hachaj, et. el in [11] made a video annotation method that enables both

numerical and categorical features calculation. Their aim was to create efficient

system for learning Karate. Since most of the up-to-date videos data are ama-

teur films which are not reliable for self-learning. This system is very close to

our system, which we could benefit from knowing the methods and techniques

they used.

• T. Hachaj, et. el in [12] proposed a calibration procedure of three Kinect sensors

that integrates the data into one skeleton. Their problem was to find a way to

increase Karate motion recognition accuracy and effectiveness of the fusion of

the body joints gathered from different sensors. They reached a positioning of

the three sensors to improve the non-classified techniques with 48%. In case

of using GDL (Gesture Description Language) and more than one Kinect this

paper will help us to increase our accuracy.

Chapter 2. iKarate: Improving Karate Kata 14

2.1.1 Similar System Description

• A system that was proposed by Mitsuhashi, el. in [1] presents a support sys-

tem of body motion based on three-dimensional bio mechanism evaluation. The

most important problem they face was imperfect imitation problem, that human

cannot attain the perfect copy or imitation of the referenced motion because of

skeleton size, each skeleton has different size from the other skeletons.

• The system made by Wennrich, el. in [3] is different because they didn’t involve

any Kinects in Video/Motion capture setups. The system they built is a game,

were the player should learn and repeat different Karate movements to increase

the progress and reach the next level. They also, used ”HTC VIVE” to build

this Virtual Reality game.

2.1.2 Comparison with Proposed Project

Our proposed project is a hybrid system, that will take Karate movements classification,

measurements of quality and grading system to a better level. We will also propose another

approaches and methods to enhance the movements classification. We will be combining

all of these features to deliver a coaching and judgment system with all the requirements

needed to reach high-quality performance in Karate (Kata style).

Chapter 2. iKarate: Improving Karate Kata 15

2.1.3 Screen Shots from previous systems

Figure 2.1: Similar System [1]

(a) First test on the system (b) Second test on the system

Figure 2.2: This System is taken from [2]

Figure 2.3: This system is taken from [3]

Chapter 2. iKarate: Improving Karate Kata 16

2.2 Project Management and Deliverables

2.2.1 Tasks and Time Plan

Figure 2.4: Tasks And Time Plan

2.2.2 Budget and Resource Costs

1. Microsoft Xbox One Kinect Sensor: 300$.

2. Microsoft Xbox One Kinect Sensor Adapter For Windows: 25$.

3. A Server To Process The Data: 160$/Month.

4. A Cloud To Store The Data: 20$/Year.

Chapter 2. iKarate: Improving Karate Kata 17

2.2.3 Supportive Documents

Figure 2.5: Data-Set 1/2

Figure 2.6: Data-Set 2/2

18

Chapter 3

System Requirements

Specifications

3.1 Introduction

3.1.1 Purpose

The purpose of this chapter is to present a detailed description of the system (iKarate).

The system is designed for Karate coaches, Karate players and self-learning Karate be-

ginners. It aims to improve Karate Kata training and coaching with the aid of motion

recognition. Further, in this chapter, features, design and the goals of the system will be

explained and how the system behaves based on the customer’s requirements. This software

requirements specification (SRS) chapter defines how our stakeholder, team and audience

see the product and its functionality.

3.1.2 Scope

The scope of the system is to provide Karate Kata coaches and players a system that will

help them in training. For the coaches; the system helps them by providing the progress

information of their students in a report and the mistakes they made while performing.

And for the players; the system can be used to train without a coach available by providing

appropriate feedback that helps them master the movements.

Chapter 3. System Requirements Specifications 19

3.1.3 Overview

The system aims to allow coaches to have a better follow up with their students by

creating a profile for each student and storing it in a database, help the coach while training

the students by analyzing their movements while performing through Kinect in real-time

and evaluate their performance. The system also can assist the Karate Kata player train

without a coach by learning from their mistakes using the full feedback report provided

after performing.

Figure 3.1: System Overview

3.1.4 Business Context

The sponsoring organization for this system is Al-Ahly Sporting Club by supporting us

in information and database gathering, also in testing the software. The system will help

trainees and the organization to be able to train Kata more efficiently and effectively, by

increasing the ability to follow up with students using generated report. It will also help

judges detect mistakes made by the performer and provide overall score.

Chapter 3. System Requirements Specifications 20

3.2 General Description

3.2.1 Product Functions

1. Detecting Karate movements and displaying it in real-time.

2. Highlights the mistake made by the Karate player while performing and dis-

plays how to perform the move correctly.

3. Evaluates the overall performance of a Karate player and provide a score.

4. The system can generate a full report of the player movements.

5. Karate coach/player can register on the system and the coach could be linked

with the students to track their progress.

6. The player’s previous history can be viewed in the system.

3.2.2 Product Context

Figure 3.2: Context Diagram

Chapter 3. System Requirements Specifications 21

3.2.3 Similar System Information

The system proposed by N. T. Thanh, el. in [2] presents a scoring software program

in grading martial arts’ movements. This system helps in self-training and evaluation of

practitioner movements in Vietnamese traditional martial arts.

Figure 3.3: This System is taken from [2]

Chapter 3. System Requirements Specifications 22

A system that was proposed by Mitsuhashi, el. in [1] presents a support system of body

motion based on three-dimensional bio mechanism evaluation. The most important problem

they face was imperfect imitation problem, that human can’t attain the perfect copy or

imitation of the referenced motion because of skeleton size, each skeleton has different size

from the other skeletons.

Figure 3.4: This System is taken from [1]

3.2.4 User Characteristics

1. Karate coach: the coach can register and get linked with his students, start

motion observation and analyses and view reports. The coach must have basic

knowledge on how to operate a computer system.

2. Karate player: the player can start motion observation, analyses and view

reports for self-learning or to be viewed by the coach. The player must have

basic knowledge on how to operate a computer system, or his parents could do

the registration if he is below 10 years.

Chapter 3. System Requirements Specifications 23

3.2.5 User Problem Statement

Karate players training require strong observation and analysis. The Kata players need

to train on the movement to perform it efficiently. Moreover, new players need guidance all

the time. The coaches view point could lead to miss judgment. Coaches also, can’t always

remember the mistakes of each performer. However, they need to remember the mistakes

of everyone to improve it.

3.2.6 User Objectives

Karate coaches need support with training the players. Moreover, they need to have

more detailed information about their players, so that they could work on the weak points of

every player. On the other hand, the player will want to practice alone at home to improve

his movements and to send the report to his coach to advise him. And the judges could use

it to support their evaluation on the player’s performance.

3.2.7 General Constraints

One of the major constrains of this project is the Kinect, weather the user could afford

it (Depends on the price in the country) or to be positioned in a right way to over the

full view of the player. Also, this system will need good internet connection for real-time

feedback and the generation of the report.

Chapter 3. System Requirements Specifications 24

3.3 Functional Requirements

3.3.1 Pre-processing

Table 3.1: Pre-Processing

Name Check Pre-processing

Code F1

Priority Extreme

Critical 10/10

Description

This function analyzes data for pre-processing before being classified.

Based on the analyses the data is sent to the appropriate functions,

to remove outliers, extrapolate or interpolate the data.

Input Array of joint coordinates

Output Sends the JSON file to the appropriate functions(F2, F3, F4, F5) as an input

Pre-condition Movement must be finished.

Post-condition Pre-processing functions should be ready to receive the output data.

Dependency Kinect data should be already stored in array from (F7)

Risk The function may not detect outliers in the data

Chapter 3. System Requirements Specifications 25

Table 3.2: Interpolation

Name Interpolation

Code F2

Priority High

Critical 9/10

Description

This function interpolates the movement data before being sent for

classification based on the movement templates length so they

would be equal for better results.

Input Captured data (JSON file)

Output Interpolated data (JSON file)

Pre-condition
Data capturing must be finished (F8) and the data files are ready

to be read.

Post-condition Data uploading function (F9) should be ready to receive and send the output

Dependency It should be called from (F1)

Risk The function may remove important points in the data

Table 3.3: Extrapolation

Name Extrapolation

Code F3

Priority High

Critical 9/10

Description

This function extrapolates the movement data before being sent for

classification based on the movement templates length so they would be

equal for better results.

Input Captured data (JSON file)

Output Extrapolated data (JSON file)

Pre-condition Data capturing must be finished (F8) and the data files are ready to be read.

Post-condition Data uploading function (F9) should be ready to receive and send the output

Dependency It should be called from (F1)

Risk The function may extrapolate unnecessary points in the data

Chapter 3. System Requirements Specifications 26

Table 3.4: Removing Outliers

Name Removing Outliers

Code F4

Priority High

Critical 9/10

Description
This function is used to remove any outliers from the data which

could be generated from the Kinect due to error in detection.

Input Captured data (JSON file)

Output Filtered data (JSON file)

Pre-condition Data capturing must be finished (F8) and the data files are ready to be read.

Post-condition Data uploading function (F9) should be ready to receive and send the output

Dependency It should be called from (F1)

Risk The function may remove important points

Table 3.5: Segmentation

Name Segmentation

Code F5

Priority Extreme

Critical 10/10

Description
This function will be used to segment the data read from the Kinect,

based on key-frames to facilitate the processing, classification and uploading.

Input Processed data (JSON file)

Output Multiple JSON file

Pre-condition Data capturing must be finished (F8) and the data files are ready to be read.

Post-condition The data is segmented

Dependency Data should be already processed (F1)

Risk The function may include unnecessary frames and exclude important frames

Chapter 3. System Requirements Specifications 27

3.3.2 Processing

Table 3.6: Classify Movement

Name Classify Movement

Code F6

Priority Extreme

Critical 10/10

Description

This function uses F-DTW to compare the data to the model. After

the player movement has been extracted and pre-processed, the server

compares the player’s movement to existing movement’s template, and

determine which movement was performed, the mistake type and

the movement accuracy.

Input Template Model, JSON file of player movement.

Output Array of Movement objects (Name, Mistake type and Accuracy)

Pre-condition
Classification model must be ready on the server, Internet condition must

exist.

Post-condition Report functions(F18)/system receives the output.

Dependency User must be logged in, F1, F8, F9

Risk Classifier might misinterpret a move for another or give false accuracy.

Chapter 3. System Requirements Specifications 28

Table 3.7: Get Joints Data

name Get Joints Data

Code F7

Priority Extreme

Critical 10/10

Description

This function is fired after 5 seconds countdown from pressing the start

recording button. The system will start capturing the skeleton joint

coordinates using the Kinect and store them in an array and sent to the

pre-processing function(s).

Input Nothing

Output Array of joints

Pre-condition
Kinect is working and capturing data, user should be ready

to perform movement.

Post-condition Array is ready to be stored in (JSON file).

Dependency User should press start recording and ready to perform the movement.

Risk The Kinect could miss some joints or couldn’t work at all.

Table 3.8: Store Data

Name Store Data

Code F8

Priority Extreme

Critical 10/10

Description
This function is fired after capturing the data from Kinect into array,

to store our data into files for processing.

Input Array of joints

Output Movement data (JSON file)

Pre-condition Capture Data is working and returning arrays.

Post-condition files are stored in a file and ready to be processed.

Dependency Kinect should already captured data in (F7)

Risk file mustn’t be opened or altered while the function works

Chapter 3. System Requirements Specifications 29

Table 3.9: File Upload

Name File Upload

Code F9

Priority Extreme

Critical 10/10

Description
This function handles uploading files processes. Files are uploaded

to the cloud server to generate reports, process and classify the data.

Input JSON file

Output Boolean indicator for successful file upload.

Pre-condition files must be ready to be read.

Post-condition Data is received by the cloud

Dependency F8

Risk The function may fail to upload a file

Chapter 3. System Requirements Specifications 30

3.3.3 Interface

Table 3.10: Check Notification

Name Check Notification

Code F10

Priority Low

Critical 5/10

Description

This function is used to display notification for the coach and players.

After the coach adds a comment, the player will be notified and when the

player finishes a movement the coach will also be notified. This will add

the notification to the database to be represented on the interface

Input Message, Time, From UserID and To UserID

Output Record in the database of the notification

Pre-condition User must have an account to receive notifications

Post-condition Notification is received

Dependency Notification system must be ready to check for updates in the database

Risk Function may fail to check notifications

Chapter 3. System Requirements Specifications 31

Table 3.11: CRUD Users

Name CRUD Users

Code F11

Priority high

Critical 7/10

Description
CRUD functions for the users. Users on the system are players and coaches.

Their data on the database can be handled by using these functions.

Input User data

Output Query updating the database

Pre-condition User must exist.

Post-condition The database is updated

Dependency UI must be ready to submit the data

Risk Queries may not succeed

Table 3.12: Hashing User passwords

Name Hashing User passwords

Code F12

Priority High

Critical 7/10

Description
This function hashes user passwords in the database and saves the hashes

to be compared later, to add more security to the system in case of tampering.

Input user ID.

Output Query inserting the hashed password

Pre-condition User must exist.

Post-condition User password is hashed in the database

Dependency None

Risk Hashing is not powerful

Chapter 3. System Requirements Specifications 32

Table 3.13: Compare Hash

Name Compare Hash

Code F13

Priority High

Critical 7/10

Description
This function will compare the password hashes to insure there is no

leak of users passwords

Input Current Hashes/Past Hashes

Output Query comparing the hashed input with the user password

Pre-condition Database must be ready to be accessed

Post-condition User gains access to login

Dependency F12

Risk Previous hashes doesn’t exist

Table 3.14: Remove Player

Name Remove Player

Code F14

Priority High

Critical 7/10

Description
This function is used by the coach to remove players assigned to him

by removing his access to view player records from the database.

Input Player ID/coach ID

Output Query removing access record from the database.

Pre-condition Player/coach ID must exist in the database.

Post-condition Specified player no longer assigned to the coach

Dependency Coach must be logged in

Risk No players assigned which leads to the failure of the function

Chapter 3. System Requirements Specifications 33

Table 3.15: CRUD Comments

Name CRUD Comments

Code F15

Priority Medium

Critical 6/10

Description

These are CRUD function for the comments formed by the coach to players.

These comments will be attached to the player record, for each player

to be updated with his coach hints and opinion.

Input Record ID/coach ID

Output Comment data (Text, Coach ID, Record ID).

Pre-condition Player, Coach and Record must exist in the database.

Post-condition Comment is inserted in the database

Dependency Coach must be logged in

Risk Function may fail to insert the comment

Table 3.16: Select Player

Name Select Player

Code F16

Priority High

Critical 7/10

Description
This function is used by the coach to select players to be under his

supervision so he could view all his records in details.

Input Player ID/coach ID

Output Record in the database.

Pre-condition Player/coach ID must exist in the users database.

Post-condition UI must be ready to receive and display the output of this function

Dependency Coach must be logged in to use this function

Risk No players in the database to select from

Chapter 3. System Requirements Specifications 34

3.3.4 Report

Table 3.17: View all Records

Name View all Records

Code F17

Priority High

Critical 8/10

Description
This function retrieves a specified player’s records and display

its details to the user like the Name, accuracy, score, mistake, etc...

Input Player ID

Output Array of records which contains each record info

Pre-condition Check if the player exists on the records database.

Post-condition UI must be ready to receive and display the output of this function

Dependency User must be logged in to use this function

Risk If there is no records the function will fail

Chapter 3. System Requirements Specifications 35

Table 3.18: Calculate Overall Score

Name Calculate Overall Score

Code F18

Priority Extreme

Critical 8/10

Description

This function calculates the overall score of the player after performing

the movement, based on the move performance accuracy retrieved from

the database and the scoring criteria.

Input Movement name, accuracy, mistake type

Output Store the record score into the database

Pre-condition ‘Karate move’ accuracy/classification.

Post-condition None

Dependency F6

Risk The movement accuracy must be calculated in a right and accurate way

Table 3.19: View Progress

Name View Progress

Code F19

Priority High

Critical 7/10

Description

This function will be used after retrieving the records from the

database for the user to see his history and his overall progress and

this data should be represented in statistical graphs.

Input Array of all user records

Output Statistics on the screen

Pre-condition User must have records

Post-condition None

Dependency F18

Risk
Not enough records which could lead to non-accurate

statistics/Internet failure

Chapter 3. System Requirements Specifications 36

Table 3.20: View Report

Name View Report

Code F20

Priority High

Critical 7/10

Description
This function will be used to view the report of the current training

directly after the player finishes the training.

Input Array of joint’s coordinates

Output Movements names, rates, mistakes

Pre-condition User must exist

Post-condition None

Dependency F6

Risk The movement accuracy must be calculated in a right and accurate way

Chapter 3. System Requirements Specifications 37

3.4 Interface Requirements

3.4.1 User Interfaces

This is system is a multi-platform application, which is mainly based on a desktop

application to record the Kinect and have real-time feedback with reports and statistics

displayed on a web application. So mainly the system will not have any command line

interface but will have simplified, easy to use GUI.

3.4.1.1 GUI

Figure 3.5: Motion Detection Window: Player’s Skeleton

Fig: 3.5 Shows the Screen where the visualization of the practitioner movement is

displayed.

Chapter 3. System Requirements Specifications 38

Figure 3.6: Motion Detection Window

Fig: 3.6 Shows the ”Start/Stop Recording Button” this button will be used to start or stop

capturing the data.

Chapter 3. System Requirements Specifications 39

Figure 3.7: Motion Detection Window: Start/Stop Recording Button

Fig: 3.7 Shows how will be the final output and the final screen of the system, where it

displays the players data and informs him if the movement is wrong or correct.

Chapter 3. System Requirements Specifications 40

3.4.2 Hardware Interfaces

Figure 3.8: Motion Detection Window: System’s Feedback

In Fig: 3.8 Shows the hardware setup. Where the Kinect should be connected to a

computer and facing the Player to capture all his movements correctly. Also, the player

shouldn’t exceed 6 meters between the Kinect for better accuracy.

3.4.3 API

1. Kinet API

2. FastDTW

3. scipy

4. numpy

5. tkinter

6. sklearn

7. jinja

Chapter 3. System Requirements Specifications 41

3.5 Performance Requirements

iKarate makes use of the Kinect motion capture capability. The system must be able

to process multiple joints (25 if we take all joints), each joint contains three coordinates (X,

Y and Z) per frame. Also, The system should be able to handle multiple large data-sets for

modeling.

3.6 Design Constraints

3.6.1 Hardware Limitations

Virtual recognition device must be Kinect V2 to provide more joints, higher accuracy

and capture further moving objects.

3.7 Other non-functional attributes

3.7.1 Security

Player’s recordings saved on the system should only be accessed by the coach and the

player. Personal user login data should be saved securely.

3.7.2 Reliability

The system must be reliable in its main classification and motion detection functions, as

the operations and data reading must be accurate. When a wrong move is detected in the

classification process, the system should identify the mistake correctly with no mistakes.

3.7.3 Maintainability

The system should have the ability to be improved by enhancing the accuracy and

adding more moves. Movement data should be stored before being processed. Mistakes

made by the system should be recorded to further improve the system.

3.7.4 Usability

The system main functions should be easy to use for the user with the least amount of

steps required to perform a certain task.

Chapter 3. System Requirements Specifications 42

3.7.5 Availability

The system servers should always be running when needed and the database should

always be accessible.

3.7.6 Scalability

The system must be scalable. It can be upgraded to add more processes, data, storage

and models to the system to expand its capacity and capabilities.

3.8 Preliminary Object-Oriented Domain Analysis

Figure 3.9: Class Diagram

Chapter 3. System Requirements Specifications 43

3.8.1 Database Diagram

Figure 3.10: Database Diagram

Chapter 3. System Requirements Specifications 44

3.9 Operational Scenarios

Figure 3.11: Use Case Diagram

Scenario 1: Karate performance The Karate player starts performing and the virtual

recognition device capture his/her movement. The system receives the movement data and

processes it.

Chapter 3. System Requirements Specifications 45

Scenario 2: players accounts/profiles The coach handles his/her student’s accounts/profiles.

Or in case of the system being used by an independent player; he/she handles their own

account/profile. Handlers control certain functions in the system: - Coaches add students/-

players to the system

- Player’s information can be edited.

- Coaches remove students/players from the system.

- View all players, search and filter them.

Scenario 3: movement detection and classification After the movement data is processed,

it is analyzed by the system to be classified. This data is being processed and analyzed as

the player is performing and the virtual device is capturing his/her movement. When the

movement data reading shows a high probability of a certain movement is currently being

performed, the system predicts the movement then classify if it was done correctly.

Chapter 3. System Requirements Specifications 46

3.10 Preliminary Schedule Adjusted

Figure 3.12: Tasks And Time Plan

3.11 Preliminary Budget Adjusted

1. Kinect Sensor And Adapter Bundle: 280$.

2. Azure Storage: 0.058$/GB Per Month.

3. Azure SQL Database 4 VCORE: 1.01$/Hour.

4. Azure Machine Learning.

Chapter 3. System Requirements Specifications 47

3.12 Appendices

3.12.1 Collected material

Those are the mails sent to the authors of [13] to get their data-set and ask for guidance.

Figure 3.13: Data-Set 1/2

Figure 3.14: Data-Set 2/2

48

Chapter 4

Software Design Document

4.1 Introduction

4.1.1 Purpose

This chapter purpose is to present fully detailed description of iKarate System Archi-

tecture, and to provide the purpose of implementing this application with full definition of

functional requirements and showing the functionality of each component and their inter-

action together.

4.1.2 Scope

The scope of the system is to provide Karate coaches and players a system that will help

them in the training and judging. For the coaches: the system helps them by providing the

progress of their students in a report and the mistakes they made while performing. For

the players: the system can be used to train without the coach by providing appropriate

feedback that helps them master the movements.

Chapter 4. Software Design Document 49

4.1.3 Overview

The main goal of this project is to capture the moves of the performers in real time,

analyse those moves and give them a feedback report to enhance their technique or alert

them if they are performing a move or a stance incorrectly. One of the challenges we faced

while comparing and analysing the captured motion, is that we should take into consider-

ation that the activities might be performed with different speed, body proportions such

as (Limbs length) and initial position of the students. Another challenge is the real-time

feedback, giving the users a feedback and a report on their moves whether it was right or

not in real-time is essentially important after the move is performed. The report includes

tips on how to execute the move correctly the next time.

Figure 4.1: Block Diagram

Chapter 4. Software Design Document 50

4.2 System Architecture

4.2.1 Architectural Design

The system was designed to satisfy the MVC system architecture model based on the

functional and non-functional requirements.

Figure 4.2: Architecture Diagram

Chapter 4. Software Design Document 51

4.2.1.1 Model

The model is the data used by the program. Model objects retrieve and store mod-

els state in the database. The model also contains the core of our application such as:

classification, movement, report, pre-processing, player and coach.

4.2.1.2 View

The view is responsible for presenting the data in a User Interface. There are three

different views, coach view is responsible for viewing the enrolled players and their progress,

player view represents the functions and data available to the player, and report view which

is responsible for displaying the desired report from the report data generated by the system.

4.2.1.3 Controller

The Controller is responsible for rendering the appropriate view with the model data.

The interactions and requests done in the view are handled by the database and the model

and then data is sent back to the view to be shown to the user. The system overview contains

three controllers, which are coach controller, player controller and report controller.

Chapter 4. Software Design Document 52

Figure 4.3: Hardware Architecture Diagram

4.2.2 Decomposition Description

4.2.2.1 Class Diagram

The whole system is based on the MVC design pattern which separates the application

into three components, which are model, view and controller. The model corresponds to all

the data-related logic. Model objects retrieve and store models state in a database. The

View component is used for all the UI (User Interface) logic of the application. Controllers

act as a bridge between the model and the view components to process all the business logic

and incoming requests, manipulate data using the model component and interact with the

views to render the final output.

Chapter 4. Software Design Document 53

Figure 4.4: Class Diagram

Chapter 4. Software Design Document 54

4.2.2.2 Singleton Design Pattern

The single-tone design pattern is used to optimize the objects that is created in the

system, specially database objects. The system will only need one database connection to

avoid jamming the server. It is implemented by declaring the instance as a private static

data member. Provide a public static member function that encapsulates all the initializa-

tion code and provides access to the instance.

Figure 4.5: Singleton Design Pattern

Chapter 4. Software Design Document 55

4.2.2.3 Decorative Design Pattern

Decorator Design pattern acts as a wrapper to the existing class which allows the user

to add new functionality and behavior to an existing object dynamically, without altering

its structure. The system will use decorator design pattern in creating customized reports.

So, each user can create a report with specific information that is needed.

Figure 4.6: Decorative Design Pattern

Chapter 4. Software Design Document 56

4.2.2.4 Observer Design Pattern

Observer Design Pattern defines a one-to-many dependency between objects so that

when one object changes its state, all its dependents are notified and updated automati-

cally. It is used for the notification system, so that the users are always notified with the

updates.

Figure 4.7: Observer Design Pattern

Chapter 4. Software Design Document 57

4.2.2.5 Activity Diagram

Figure 4.8: Activity Diagram

Chapter 4. Software Design Document 58

4.2.2.6 System Sequence Diagram

4.2.2.6.1 Recording, Pre-processing & Processing: As shown in figure 4.9, the

player opens the application and start recording then when the player stops the recording,

pre-processing and processing are done then the results are send to the player.

Figure 4.9: Pre-Processing & Processing Sequence Diagram

Chapter 4. Software Design Document 59

4.2.2.6.2 View History: As shown in figure 4.10, the user requests the history of a

specific player which is retrieved from the database then the history is displayed on the

screen.

Figure 4.10: View History Sequence Diagram

Chapter 4. Software Design Document 60

4.2.2.6.3 Progress: As shown in figure 4.11, the coach request the progress of one of

his students, the progress is retrieved from the database and displayed to the coach.

Figure 4.11: View Player’s Progress Sequence Diagram

Chapter 4. Software Design Document 61

4.2.2.6.4 Assign Player: As shown in figure 4.12, the coach request a list of the un-

assigned players which is retrieved from the database and then displayed to the coach, so

that he chooses the players that he wants to assign.

Figure 4.12: Assign Players Sequence Diagram

Chapter 4. Software Design Document 62

4.2.2.6.5 Login: As shown in figure 4.13, the user is represented with the login screen,

so that the user is able to write the username and password, then the username and password

are validated from the database, then if they are right and application will move to the next

screen, but if they are wrong, an error message will be displayed.

Figure 4.13: Log In Sequence Diagram

Chapter 4. Software Design Document 63

4.2.3 Design Rationale

The design of the system is based on the MVC as mentioned before to make it easier

to create, modify, and optimize the functionality of the system. Firstly, in the hardware

design we had multiple choices to choose from, the first option was the Kinect v1, the

second option was the Kinect v2 and the third option was the accelerometers. We picked

the Kinect v2 since it is the most reliable hardware. We could not choose the accelerometers

since the practitioners are not allowed to wear any hardware during the performing of the

move. Moreover, we needed to connect an accelerometer for each joint, which would be

expensive and unreasonable. Also the Kinect v2 gets more joints and is better and more

accurate than v1, that will help us achieve better results. Secondly, during the software

design we had the choice between K-NN and Fast-DTW but we picked Fast-DTW since the

K-NN is a basic algorithm that is used for proving the concept and is not intended for the

deployment phases.

Chapter 4. Software Design Document 64

4.3 Data Design

4.3.1 Data Description

Figure 4.14: Database Diagram

4.3.2 Data Dictionary

The system database is derived from the main components in our application which are

session, User and movement. The users tables are made with EAV (Entity Attribute Value)

model, where we store the Entities and Attributes separately then collects their values in

another table, to deliver highly dynamic system.

Chapter 4. Software Design Document 65

4.4 Component Design

4.4.1 Input

The input of the system is the coordinates of all the body joints in 3D space (X, Y, Z)

captured from the Kinect. The Kinect’s hardware is composed of an Infrared Emitter to

track the body, displaying a basic skeleton and the body’s joints using the Microsoft SDK

for Kinect.

Furthermore, the Kinect is capable of providing 30 frames per second with a 640 x 480-

pixel resolution using its video and depth sensor cameras. The Kinect works by starting

the camera and capturing the RGB (red, green and blue) colors of the person to form its

image. Then, the monochrome sensor and infrared projector start to receive the rays that

were emitted to get the third dimension and form the 3D imagery of the skeleton of the

person.

4.4.2 Pre-processing

Before processing on any of the data acquired by the Kinect, some pre-processing had

to be done. The pre-processing in our system consists of series of operations needed to be

done on the data for further operations such as classification. The pre-processing consists

of data filtering, data interpolation, data normalization, feature selection and data segmen-

tation. Normalization is the major pre-processing phase in the system, which will be used

to overcome different body proportions (Height, Scale, etc.) or a dominant factor in the

data. The algorithm proposed is ”Z-score normalization”.

X =
V alue− µ

σ
(4.1)

Where ”Value” is the data point, µ is the mean value and σ is the standard deviation

of the data. If ”X” is equals to the mean value of the feature, it will be normalized to

zero. If it’s below the mean, it will be normalized to a negative number, and if it’s above

the mean, it will be normalized to a positive number, The ”X” value is calculated by the

standard deviation. If the un-normalized data had a large standard deviation value, then

the normalized values would be closer to zero.

Chapter 4. Software Design Document 66

4.4.3 Segmentation

The purpose of this phase is to segment each movement that the player had performed

while the Kinect is capturing the data, this is essential to classify each move independently.

By plotting the data we noticed that there is a small gap between each move, this gap can

be used to segment each movement.

4.4.4 Classification

After pre-processing and segmenting the data, we chose Fast-DTW for the classification.

Fast-DTW is used to manage the different speeds of the moves taken by the player using

the Kinect and to provide the player a real time feedback as accurate as possible. It is an

algorithm for measuring similarities between two signals, each signal may have a different

speed from the other signals. Fast-DTW is also an alignment algorithm which is capable of

classifying two different time signals. Fast-DTW could be used with many different distance

equations but the ”Euclidean Distance” is the one used to compute the distance between

the classes.

d =

n∑
xi,yi

√
(xi − yi)2 (4.2)

Where ”D” is the distance value, ”X” represents the data-set joint position and ”Y”

represents the performer’s joint position.

Chapter 4. Software Design Document 67

Figure 4.15: Fast-DTW

4.4.5 Output

The last part of the system is the output. Which will be categorized as follows:

Result Screen: This screen will tell the user if they performed the move correctly or not,

with a percentage of how much the movement was performed correctly. If the percentage

is acceptable and the move was done correctly, the screen will inform the user and display

the percentage of the correctness. If the practitioner performed the move in a wrong way,

the screen would display to them what they did incorrectly regarding the move and how to

perform it correctly with a report.

Report: The second part of the output would be the report. The report will benefit both the

student and the coach. Since this report will have a fully-detailed statistics of how accurate

the practitioner performed the moves, mistakes and how to improve the performance.

Chapter 4. Software Design Document 68

4.5 Human Interface Design

4.5.1 Overview of User Interface

The system’s user interface is simple and efficient that guarantees all users to find it

easy. Firstly, the user will start the application by signing in with his account or creating a

new one. After that, the system will move to the movement capture screen where he takes

the position in front of the Kinect, assuming that it is already connected with the computer.

The movement capture screen will have one button for start/stop recording that insures

that the user will not have many complicated buttons so he will not get confused. Secondly,

after recording the movement, a screen will show the overall accuracy and if the sequence

of movements he/she performed is acceptable or not. Lastly, there will be a filter screen for

the user to choose the preferences he wanted to be displayed in the detailed report.

Chapter 4. Software Design Document 69

4.5.2 Screen Images

Figure 4.16: Movement Capture Interface

Chapter 4. Software Design Document 70

Figure 4.17: Results Interface

Chapter 4. Software Design Document 71

Figure 4.18: Report

Chapter 4. Software Design Document 72

4.5.3 Screen Objects and Actions

The system GUI is so simple since users might not have high knowledge with computers.

• Login interface consists of a simple form to get the users data and sign up form

to register on the system. This data will be used to be displayed on the report.

• Movement capture interface which contains a button for the users to start/stop

their session and some indicators to show if the Kinect detected the body or if

he is close to an edge to adjust his/her positions as shown in FIG 4.16.

• Results interface is where the user will see the session results, if he/she made a

wrong movement and what was the movement done with its details as shown in

FIG 4.17.

• Report interface where the user starts to choose some filters for the report to

be generated and displayed at the end of the session as a PDF.

Chapter 4. Software Design Document 73

4.6 Requirements Matrix

74

Chapter 5

Evaluation

TABLE: 5.1 demonstrates the accuracy of each movement. The average accuracy cal-

culated from the F-DTW as it was the best classifier is 91.07%. This accuracy has been

discussed with a Karate coach to determine whether is it good enough or not. The coach

confirms that this accuracy is very good implying the Karate Kata system.

Figure 5.1: Overall Accuracies

Chapter 5. Evaluation 75

Table 5.1: F-DTW Movements Results

Move Trials Correct Wrong Percentage

Hidari gedan-barai 16 15 1 93.75 %

Migi chudan oi-zuki 16 14 2 87.5 %

Migi gedan-barai 16 15 1 93.75 %

Migi tetsui-uchi 16 15 1 93.75 %

Hidari chudan oi-zuki 16 15 1 93.75 %

Hidari gedan-barai 16 15 1 93.75 %

Migi jodan age-uke 16 13 3 81.25 %

Chapter 5. Evaluation 76

5.1 Experiments and results

Figure 5.2: Setup

As shown in Fig: 5.2, the performers need to calibrate their bodies in-front of the Kinect

in order to make sure that their whole skeleton is detected. Afterwards, they perform the

moves and when they finish, the system will presents the results of the whole session.

Three players made 30 trials overall, each trial contains the 21 moves to test the system.

Each trial was a combination of the correct moves and the incorrect moves, to see whether

the system will classify them correctly.

We evaluated our system using dependant and in-dependant data, where we conducted

an experiment by using professional and non-professional players to test the system, some

players on each side tried using the system have some experience with using the system,

while the other players were testing the system for the first time.

The tests indicate that among all classifiers F-DTW had the best average of accuracy

followed by KNN, SVM, Decision Tree, $P, C-NN, and Multilayer Perceptron respectively.

F-DTW had the highest accuracy due to its ability to analyze various time series to measure

the association between two temporal sequences with similar behavior where time and speed

vary. The $P had the lowest accuracy since it takes only 2D Data (X, Y), so it neglects an

enormous part of the data. F-DTW bested all the other classifiers and was able to reach

an accuracy of 91.07% as shown in Table: 5.2. It also needed the least pre-processing as it

accepts data with different sizes.

Chapter 5. Evaluation 77

Table 5.2: Different classification algorithm comparison.

F-DTW K-NN SVM Multilayer C-NN Decision Tree $P

Perceptron

Performer 1 95.23 % 80.95 % 66.67 % 66.667 % 66.667 % 61.90 % 52.38 %

Performer 2 95.23 % 71.42 % 80.95 % 76.19 % 71.42 % 52.38 % 66.667 %

Performer 3 90.47 % 85.71 % 57.14 % 57.14 % 57.14 % 71.42 % 61.90 %

AVG 93.65 % 79.36 % 68.25 % 66.67 % 65.07 % 61.90 % 60.31 %

5.1.1 Usability Study

An experiment was conducted to evaluate how easy, accurate and satisfactory the system

is. Six different users were introduced to the system and given the steps for each task,

each user was observed while interacting with the system and they did not encounter any

problems or experience confusion. They recorded their moves and the system generated a

detailed report for every session. Two players used to play Karate in the past. At the end

of the experiment, each user was given a questionnaire to obtain the most accurate results

from the experiment. The results are shown in Table: 5.3.

5.2 Motion Capture Hardware

For capturing the movements’ signals, an IR camera sensor was used to detect the hu-

man body. The Kinect camera was used for capturing the data, since it contains an IR

sensor and is capable of detecting the skeleton of the human body. The Kinect is able to

detect the 3D coordinates (X, Y, Z) of 25 joints of the performer and extract them using

the Infrared Emitter. The software used as mentioned in [14] and [15] to utilize the Kinect

is the Kinect SDK (Software Development Kit).

Furthermore, the Kinect is able to provide 30 FPS (Frames Per Second) with a resolution

of 640 x 480-pixels as mentioned in Microsoft’s book [15] with each frame containing the

skeleton of the performer. The Kinect is also able to detect up to six performers.

Chapter 5. Evaluation 78

5.3 Data Pre-processing

Before using the data in any of the classification algorithms, pre-processing was needed.

The pre-processing contains two phases. The first phase is segmenting the sequence of

movements and separating them, the second phase is interpolating the signal to be suitable

for creating classification models. Further, to achieve better accuracy and results, the

training data were clustered (A cluster for each move) since every Kata in karate must be

performed in the same sequence.

5.3.1 Segmentation

Each move should be independently analyzed from the other movements to be processed

and classified without interfering with the others. Therefore, a segmentation method was

needed to split each move from the other moves and then send each move to the next phase.

Difference = |Mean(Window1)−Mean(Window2)| (5.1)

In Karate Kata, there is a slight pause before each move, which was decided upon after

performing several tests. Therefore, a method of segmentation was developed according

to the collected information. The technique used to segment the movement stream was

to construct a queue that will serve as a window filled with joint coordinates. A feature

selection was used to detect the dominant joint. After that, the mean of each two con-

secutive windows is calculated and subtracted to use their absolute value as shown in Eq:

5.1. A threshold is calculated automatically based on the difference using an unsupervised

clustering method (ISODATA algorithm). If the difference is below the threshold, then this

indicates that there was no motion and the move will be segmented at this point. As shown

in Fig: 5.3, the left SUB-Fig: 5.3a represent the data before segmentation, while SUB-Fig:

5.3b represents the data after segmentation and that the sequence was separated.

Chapter 5. Evaluation 79

(a) before (b) after

Figure 5.3: before and after pre-processing

5.3.2 Linear Interpolation

The movement signal data needed to be interpolated for classification purposes. Multiple

classifiers required the data to be of the exact size to be able to generate a model of those

signals. Those classifiers took the whole signal data as features for better and accurate

classification. So linear interpolation in Eq: 5.2 was used to simply unify the signals size,

without losing the signal shape or properties.

B2 =
(A2 −A1)(B3 −B1)

(A3 −A1)
+B1 (5.2)

A is the time space that represents the points location and B represent the signal data.

(A1, B1), (A3, B3) are two known points that will be used to interpolate and create a new

point (B2) between them using (A2).

5.4 Processing methods

This section will be representing the processing and classification phase with all the

different algorithms used. This approach implemented different algorithms to deduce the

suitable one for classifying and analyzing human motion data that was captured from IR

sensors. Each algorithm will be explained along with the type of data entered.

Chapter 5. Evaluation 80

5.4.1 Fast-Dynamic Time Warping

F-DTW is an algorithm for comparing differences between two waves [16]. Each move-

ment is likely to be performed at different speeds which make every signal different from

the other in size, so an algorithm to handle this problem was necessary. F-DTW is used

to handle the player’s various performing speeds captured by the Kinect and to present

the player with an optimal real-time evaluation. It is also used in [5], [6], [7], [17], [10],

[18], [19] and [20]. F-DTW can be extended to various data forms, such as images, audio

and graphics. Therefore, any signal that can be transformed to a linear sequence could be

evaluated using it.

After extracting the data from the Kinect and pre-processing it, as mentioned in SUB-

SECTION 5.2,

D(P) =

κ=K∑
K=1

D(Pki − Pkj) (5.3)

F-DTW computes the distance and path as shown in EQUATION: 5.3. Where D(P)

is Euclidean Distance of the warp path P. Where the wrap path length is K, and D(pki,

pkj) represents the distance of two data points (one from Training data and the other is

from the Testing data) in the kth element of the warp path as mentioned by Stan Salvador

et al. in [16]. F-DTW can compute the distance with multiple methods, but the Euclidean

Distance is the one this approach is using.

5.4.2 Other Algorithms

In addition, other algorithms have been tested on the system to establish the highest

accuracy. Unlike the F-DTW, these algorithms need more pre-processing. They need to be

interpolated first, so that all the signals have the same size, because these algorithms don’t

accept data with different sizes.

• SVM: Is a machine learning algorithm used to find a hyperplane that distin-

guishes classes in a pattern, and it is widely used in multiple fields. The created

hyperplane illustrates the maximum margin distance between data points [21],

[22].

Chapter 5. Evaluation 81

• DT: Decision tree is a visual representation of alternative options based on par-

ticular criteria for a decision. It is known as a decision tree since it starts with

a single box (or root), which branches off into different solutions, similar to a

tree [23].

• K-NN: K-nearest neighbors is a non-parametric pattern recognition algorithm

used to classify objects by setting a weight to each object, and a set of neighbors

vote to decide which class the object belongs to [24].

• $P: Point-cloud recognizer recognizes unordered 2-D strokes as point-clouds.

Which allows it to recognize multi-strokes (Multiple joints in our case) with

equality. Its predecessor is $1 algorithm, which is built upon Dynamic Time

Warping. Our experiment included using multiple combination of two dimen-

sions (Ex: X and Z) to determine the best outcome the recognizer could use to

detect the performers’ moves [25].

• C-NN: Convolutional neural networks represent a group of neural networks that

have been surprisingly efficient in areas such as image recognition and classifica-

tion. In addition to controlling vision in robots and self-driving cars, ConvNets

has been effective in recognizing faces, objects and road signs [26].

• Multilayer Perceptron: Represents a class of neural networks composed of at

least three nodes. In addition, each of the node of the multilayer perceptron,

aside from the input node is a neuron that utilizes a non-linear activation func-

tion. The nodes of the multilayer perceptron are organized in layers [27].

Chapter 5. Evaluation 82

Table 5.3: Usability Study

Very Weak Weak Neutral Agree Strongly Agree

Was the interface pleasant ? 0% 17% 0% 66% 17%

Did iKarate analyse all your moves ? 0% 0% 17% 83% 0%

Did your style improve at the end of the session ? 0% 0% 17% 33% 50%

Did you find the brief message useful after playing ? 0% 17% 17% 17% 49%

Was the detailed report appealing ? 0% 0% 17% 33% 50%

How accurate did you find the scores acquired in the detailed report ? 0% 0% 17% 83% 0%

Would iKarate improve your Karate performance ? 0% 0% 17% 33% 50%

Would iKarate help you practice Karate at home ? 0% 0% 17% 33% 50%

Would you tell a friend about iKarate ? 0% 0% 17% 33% 50%

Would you use iKarate frequently ? 0% 0% 17% 83% 0%

Has your style improved after using iKarate ? 0% 0% 17% 33% 50%

83

Chapter 6

Conclusion

We present an approach that utilizes the IR camera sensor on karate performers to detect

and classify the movements of the performers. After implementing multiple algorithms and

tested different methods to detect movements and segment the data correctly, we reached

acceptable results using the F-DTW algorithm. Our biggest challenge was to correctly

segment each Karate move from the stream of data and classify them, and our best approach

to segment the moves was to use windowing method and use ISO data algorithm to calculate

the threshold. combining the F-DTW algorithm and the segmentation method, we achieved

a total accuracy of 91.07%. With these results, we evaluated our system using dependant

and in-dependant data, where we tested the system with professional and non-professional

players, some players on each side tried using the system in a previous session, while the

other players were testing the system for the first time. The result of this experiment

satisfied the system’s expectations and reached a great milestone. The 21 moves of kata

1 (Heain Shodan) were the primary movements that have been used in the system. The

system results satisfy the field of guiding Karate trainees and assisting coaches, as it involves

no risk for the users. In addition, the system generates a comprehensive report, so it can be

reviewed by a human to determine whether the system failed to correctly classify movements

done by the performer. This approach assists the performers in practicing and improving

their performance by presenting them with the mistakes in their style of performing. The

report system gives a score to the player determined by the mistakes performed and stores

all the session’s data to be reviewed later by the coach or the player, making the system

very applicable for home or remote Karate practising.

Chapter 6. Conclusion 84

6.1 Future directions

For future, we aim to present the result to the performer in real-time, and enhance

the accuracy. More features could be implemented such as handling multiple players and

classify each player’s movement. We would like to consider more

85

Bibliography

BIBLIOGRAPHY 86

[1] K. Mitsuhashi, S. Yokota, H. Hashimoto, S.-G. Shin, and D. Chugo, “Educational

system of physical motion based on 3d biomechanism evaluation,” 2016 IEEE Inter-

national Conference on Industrial Technology (ICIT), 2016.

[2] N. T. Thanh, N. D. Tuyen, L. Dung, and P. T. Cong, “Implementation of techni-

cal data analysis of skeleton extracted from camera kinect in grading movements of

vietnamese martial arts,” 2017 International Conference on Advanced Technologies for

Communications (ATC), 2017.

[3] K. Wennrich, B. Tag, and K. Kunze, “Vrte do - theway of the virtual hand,” Proceedings

of the 24th ACM Symposium on Virtual Reality Software and Technology - VRST 18,

2018.

[4] T. Hachaj, M. R. Ogiela, and K. Koptyra, “Effectiveness comparison of kinect and

kinect 2 for recognition of oyama karate techniques,” 2015 18th International Confer-

ence on Network-Based Information Systems, 2015.

[5] T. Hachaj, M. R. Ogiela, M. Piekarczyk, and K. Koptyra, “Advanced human mo-

tion analysis and visualization: Comparison of mawashi-geri kick of two elite karate

athletes,” 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017.

[6] E. Escobedo-Cardenas and G. Camara-Chavez, “A robust gesture recognition using

hand local data and skeleton trajectory,” 2015 IEEE International Conference on Im-

age Processing (ICIP), 2015.

[7] T. Hachaj, M. R. Ogiela, and K. Koptyra, “Human actions modelling and recognition

in low-dimensional feature space,” 2015 10th International Conference on Broadband

and Wireless Computing, Communication and Applications (BWCCA), 2015.

[8] P. Alborno, N. D. Giorgis, A. Camurri, and E. Puppo, “Limbs synchronisation as a

measure of movement quality in karate,” Proceedings of the 4th International Confer-

ence on Movement Computing - MOCO 17, 2017.

[9] Y. Choubik and A. Mahmoudi, “Machine learning for real time poses classification us-

ing kinect skeleton data,” 2016 13th International Conference on Computer Graphics,

Imaging and Visualization (CGiV), 2016.

BIBLIOGRAPHY 87

[10] A. D. Calin, “Variation of pose and gesture recognition accuracy using two kinect

versions,” 2016 International Symposium on INnovations in Intelligent SysTems and

Applications (INISTA), 2016.

[11] T. Hachaj, M. R. Ogiela, and K. Koptyra, “Learning from annotated video: An ini-

tial study based on oyama karate tournament recordings,” 2015 10th International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.

[12] T. Hachaj, M. R. Ogiela, and M. Piekarczyk, “Dependence of kinect sensors num-

ber and position on gestures recognition with gesture description language semantic

classifier,” Proceedings of the 2013 Federated Conference on Computer Science and

Information Systems, 2013.

[13] ——, “The open online repository of karate motion capture data: A tool for scientists

and sport educators,” 2017 IEEE Symposium Series on Computational Intelligence

(SSCI), 2017.

[14] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE Multimedia, vol. 19, no. 2, p.

4–10, 2012.

[15] R. S. Miles, Start here!: learn the Kinect API. Microsoft, 2012.

[16] S. Salvador and P. Chan, “Fastdtw: Toward accurate dynamic time warping in linear

time and space,” 2004.

[17] T. Hachaj, M. Piekarczyk, and M. R. Ogiela, “How repetitive are karate kicks per-

formed by skilled practitioners?” Proceedings of the 2018 10th International Confer-

ence on Computer and Automation Engineering - ICCAE 2018, 2018.

[18] T. Hachaj, M. R. Ogiela, and M. Piekarczyk, “Real-time recognition of selected karate

techniques using gdl approach,” Advances in Intelligent Systems and Computing Image

Processing and Communications Challenges 5, p. 99–106, 2014.

[19] V. M. S. Janaki, S. Babu, and S. S. Sreekanth, “Real time recognition of 3d gestures

in mobile devices,” 2013 IEEE Recent Advances in Intelligent Computational Systems

(RAICS), 2013.

BIBLIOGRAPHY 88

[20] B. Emad, O. Atef, Y. Shams, A. El-Kerdany, N. Shorim, A. Nabil, and A. Atia,

“ikarate: Improving karate kata,” Procedia Computer Science, vol. 170, p. 466–473,

2020.

[21] H. P. Yue Shihong, Li Ping, “Svm classification its contents and challenges,” 2003.

[22] P. P. P. S. N. Y. W. W. X. SHUJUN HUANG, NIANGUANG CAI, “Applications of

support vector machine (svm) learning in cancer genomics,” Cancer Genomics Pro-

teomics, 2017.

[23] H. Sharma and S. Kumar, “A survey on decision tree algorithms of classification in

data mining,” International Journal of Science and Research (IJSR), vol. 5, 04 2016.

[24] D. Cheng, S. Zhang, Z. Deng, Y. Zhu, and M. Zong, “knn algorithm with data-driven

k value,” Advanced Data Mining and Applications Lecture Notes in Computer Science,

p. 499–512, 2014.

[25] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock, “Gestures as point clouds,” Proceedings

of the 14th ACM international conference on Multimodal interaction - ICMI ’12, 2012.

[26] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” ArXiv

e-prints, 11 2015.

[27] A. Rana, A. S. Rawat, A. Bijalwan, and H. Bahuguna, “Application of multi layer

(perceptron) artificial neural network in the diagnosis system: A systematic review,”

2018 International Conference on Research in Intelligent and Computing in Engineer-

ing (RICE), 2018.

[28] “Coronavirus,” https://www.who.int/emergencies/diseases/novel-coronavirus-2019,

last accessed on 15/04/20.

[29] “Shotokan karaté do,” https://shotokancrsa.com/heianshodan-eng.htm, last accessed

on 16/04/20.

[30] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” 2008 Eighth IEEE Interna-

tional Conference on Data Mining, 2008.

[31] K. Malik, H. Sadawarti, and K. G. S, “Comparative analysis of outlier detection tech-

niques,” International Journal of Computer Applications, vol. 97, no. 8, p. 12–21, 2014.

BIBLIOGRAPHY 89

[32] Dharmayanti, M. Iqbal, A. Suhendra, and A. B. Mutiara, “Velocity and acceleration

analysis from kinematics linear punch using optical motion capture,” 2017 Second

International Conference on Informatics and Computing (ICIC), 2017.

[33] T. Hachaj and M. R. Ogiela, “Qualitative evaluation of full body movements with

gesture description language,” 2014 2nd International Conference on Artificial Intelli-

gence, Modelling and Simulation, 2014.

[34] J.-H. Kim, N. D. Thang, and T.-S. Kim, “3-d hand motion tracking and gesture recog-

nition using a data glove,” 2009 IEEE International Symposium on Industrial Elec-

tronics, 2009.

[35] K. Kolykhalova, A. Camurri, G. Volpe, M. Sanguineti, E. Puppo, and R. Niewiadom-

ski, “A multimodal dataset for the analysis of movement qualities in karate martial

art,” Proceedings of the 7th International Conference on Intelligent Technologies for

Interactive Entertainment, 2015.

[36] K. Mitsuhashi, H. Hashimoto, and Y. Ohyama, “The curved surface visualization of

the expert behavior for skill transfer using microsoft kinect,” Proceedings of the 11th

International Conference on Informatics in Control, Automation and Robotics, 2014.

[37] R. Niewiadomski, K. Kolykhalova, S. Piana, P. Alborno, G. Volpe, and A. Camurri,

“Analysis of movement quality in full-body physical activities,” ACM Transactions on

Interactive Intelligent Systems, vol. 9, no. 1, p. 1–20, Nov 2019.

[38] V. A. Prisacariu and I. Reid, “Robust 3d hand tracking for human computer interac-

tion,” Face and Gesture 2011, 2011.

[39] K. Tanaka, “3d action reconstruction using virtual player to assist karate training,”

2017 IEEE Virtual Reality (VR), 2017.

[40] K. S. Urbinati, E. Scheeren, and P. Nohama, “A new virtual instrument for estimating

punch velocity in combat sports,” 2013 35th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), 2013.

[41] T. Hachaj, K. Koptyra, and M. R. Ogiela, “Averaging of motion capture recordings for

movements’ templates generation,” Multimedia Tools and Applications, vol. 77, no. 23,

p. 30353–30380, 2018.

BIBLIOGRAPHY 90

[42] T. Hachaj and M. R. Ogiela, “Rule-based approach to recognizing human body poses

and gestures in real time,” Multimedia Systems, vol. 20, no. 1, p. 81–99, Mar 2013.

[43] T. Hachaj, M. Piekarczyk, and M. Ogiela, “Human actions analysis: Templates gen-

eration, matching and visualization applied to motion capture of highly-skilled karate

athletes,” Sensors, vol. 17, no. 11, p. 2590, Oct 2017.

[44] C. Vondrick, D. Ramanan, and D. Patterson, “Efficiently scaling up video annotation

with crowdsourced marketplaces,” Computer Vision – ECCV 2010 Lecture Notes in

Computer Science, p. 610–623, 2010.

[45] P. Paliyawan, K. Sookhanaphibarn, W. Choensawat, and R. Thawonmas, “Body mo-

tion design and analysis for fighting game interface,” 2015 IEEE Conference on Com-

putational Intelligence and Games (CIG), 2015.

[46] T. Hachaj and M. R. Ogiela, “Semantic description and recognition of human body

poses and movement sequences with gesture description language,” Communications

in Computer and Information Science Computer Applications for Bio-technology, Mul-

timedia, and Ubiquitous City, p. 1–8, 2012.

[47] S. Wada, M. Fukase, Y. Nakanishi, and L. Tatsuta, “In search of a usability of kinect

in the training of traditional japanese “kata” — stylized gestures and movements,”

2013 Second International Conference on E-Learning and E-Technologies in Education

(ICEEE), 2013.

[48] K. Mitsuhashi, S. Yokota, H. Hashimoto, S.-G. Shin, and D. Chugo, “Education system

of skill succession based on 3d evaluation and improvement in time series,” 2015 IEEE

Region 10 Humanitarian Technology Conference (R10-HTC), 2015.

[49] ——, “Educational system of physical motion based on 3d biomechanism evaluation,”

2016 IEEE International Conference on Industrial Technology (ICIT), 2016.

[50] Y.-M. Chou, H.-R. Chen, and Y.-T. Shih, “Design of motion sensing martial art learn-

ing system,” 2019 International Conference on Intelligent Computing and its Emerging

Applications (ICEA), 2019.

