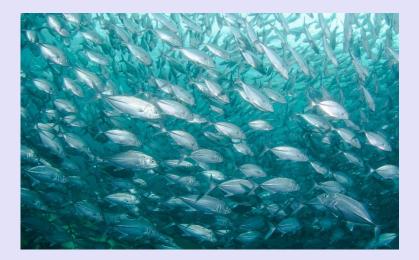


Automatic Analysis of Fish Farm Environment

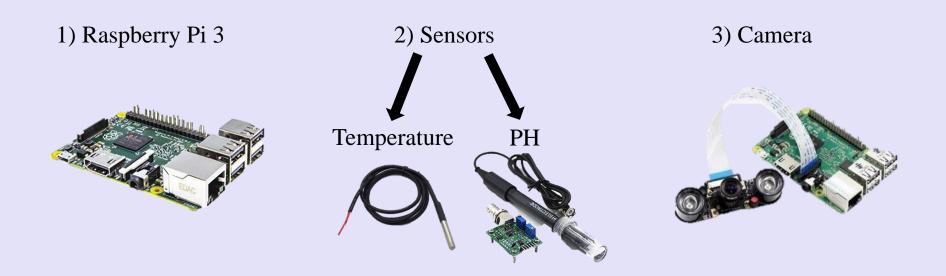
- ✤ Ahmed Waled
- ✤ Hadeer Medhat
- ✤ Mariam Esmail
- ✤ Kareem Osama

Supervised By: DR.Taraggy M Ghani Eng.Radwa Samy



**

Introduction 1/4


Fish farm environment strongly affects fish behavior and health. An uncontrolled environment may cause fish mortality. The proposed system serves this field by analyzing fish farm environment and is presented in three consequent stages.

Introduction 2/4

First Stage

The system contains interface circuit that connects reality and computer recognition systems. The interface circuit consists of three main parts.

Introduction 3/4

Second Stage

Fish Disease Classification

Our system classify three different types of fish diseases

EUS

fppt.com

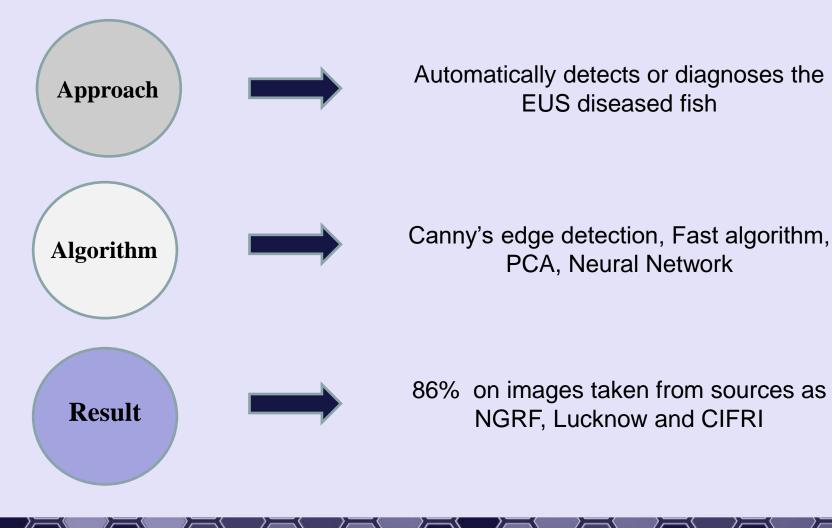
ICH

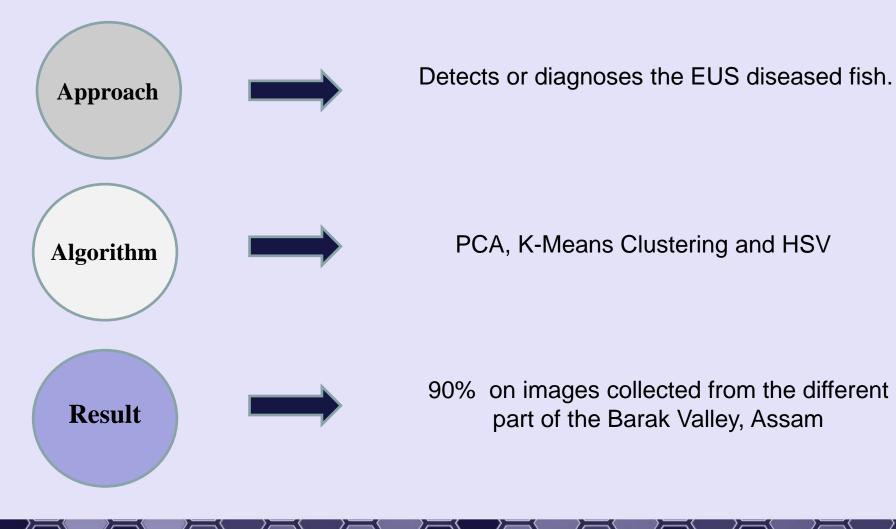
COLUMNARIS

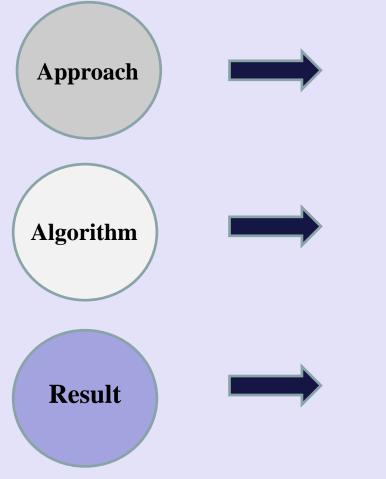
Our system tracks fish movements to hep in expectation of fish behavior

Introduction 4/4

Third Stage


The system sends a notification through an android application to inform users of any improper farm conditions and any detected infections.




Related Work I

Related Work II

Related Work III

fppt.com

Extract pathogen area of infected fish and send notification about diagnosed disease and to the fish farmers

3x3 mean filter, edge sharpening filter, Morphological erosion and dilation operations, Polar and geometric feature, PCA

90% on images collected from 8 different aquaculture farms in the Wando, Jindo, and Yosu areas of Korea

Problem Statement

- Building a system that achieves higher accuracy than manual checking.
- *** Prevent** fish diseases from spreading in fish farms.

fppt.com

Solve problem that experts may face such as to Fast fish movement and unclear vision.

Challenges

- There is no published public dataset
 - Fish4knowledge only and the site is for sale.

Concerns on diagnosing one disease at time

- Color segmentation approaches
 - Specify 1 odd color
 - Limited human vision due to earthen ponds
- A lot of measurements should be controlled

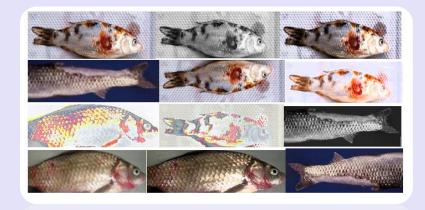
 Inaccurate Segmentation (As Color Segmentation).

fppt.com

Fish Fast Movement

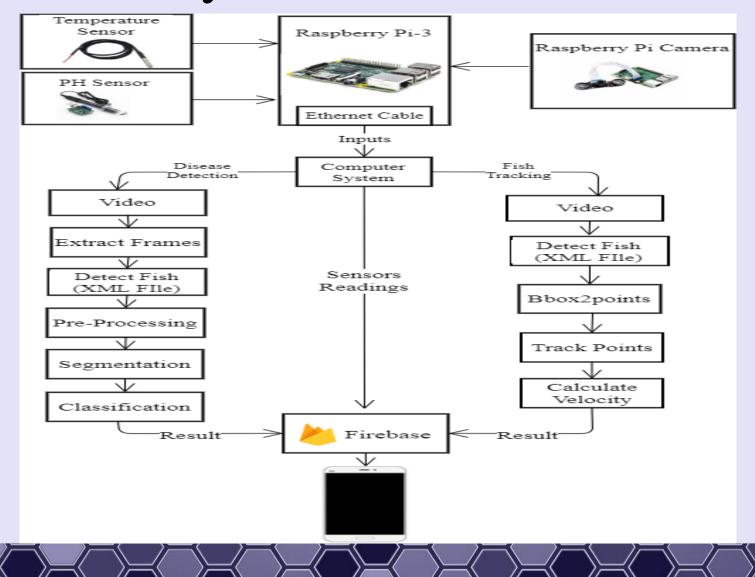
Dataset 1/2

Our data-set includes images of fish with the three types of fish diseases. Our data-set were collected from different internet resources. We also collected some images from "Africa Aquaculture Research and Training Center (AARTC), Abbassi, Egypt"

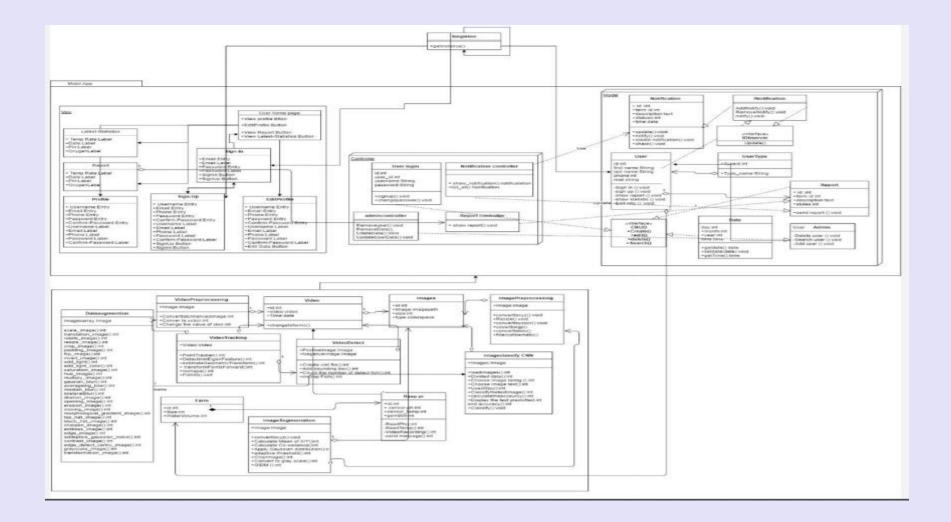

Prof. Dr. Ayman Anwar Ammar Central Laboratory for Aquaculture Research (CLAR) Egypt

Dataset 2/2

However, the number of images collected is not large enough to train the system. Therefore, we applied data augmentation to increase our samples because the collected images are not sufficient for training purpose.



Motivation


- In Egypt, The intensive aquaculture farming has grown increasingly,
- especially in the deserts of northern Sinai. Fish farms are distributed through the
- Nile Delta region and concentrated mainly in the Northern lakes

System Overview

Class Diagram

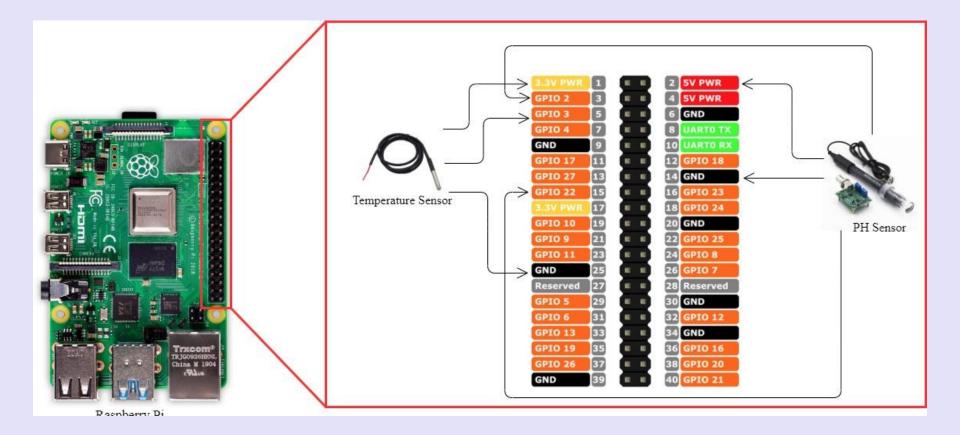
Cipteom

Algorithms used

Segmentation:

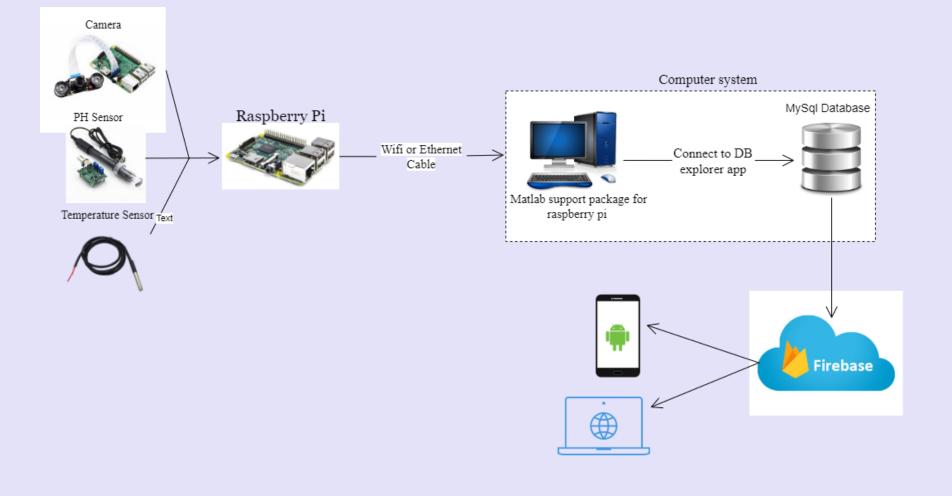
• Gaussian Distribution

Classification:


• Different architectures of convolutional neural network

Tracking

• Vision Point Tracking using Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm



Raspberry Pi connection with sensors

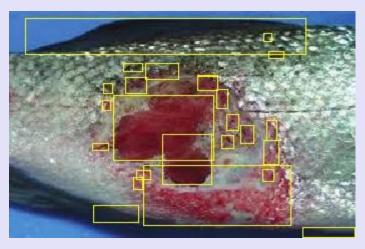
Hardware-circuit



Pre-processing

During the pre-processing phase, Three different color spaces were applied; RGB, YCbCr, XYZ and LAB.

RGB



YCBCR

Segmentation

For segmentation, we built a Gaussian distribution in three different color space, Building an effective Gaussian distribution requires a suitable computed means and covariances.

CNN Classification

- ResNet18
- ResNet50
- ResNet101
- ✤ Alex-Net
- ✤ VGG16
- ✤ VGG19
- mobilenetv2
- Xception
- Inceptionresnetv2
- Shufflenet
- Nasnetmobile
- Nasnetlarge
- Squeezenet
- Inceptionv3
- Densenet-201
- Googlenet

Model	Versions	Layers	Activation function	Input size	Convolution kernel size	Innovative point	Applications
ResNet ??	18 50 101	18 layers 50 Layers 101 Layers	RelU	224x224x3	ResNet initial convolu- tion: 7x7. Resnet 50 and 101: 1x1, 3x3 and 1x1. ResNet 18: 3x3	ResNet overcomes degradation and vanish- ing gradient problems residual blocks that increases the number of hidden layers. The core idea of ResNet is introducing "identity shortcut connection" that skips one or more layers	ImageNet 2013 dataset ?? and Automatic Spoofing Detection [1]
VGG [2]	16	16 layers	ReLU non- linear	224x224x3	VGG: 3×3	This network uses only 3×3 convolutional layers stacked on top of each other in in- creasing depth. VGG makes improvement over AlexNet by replacing large kernel- sized	ImageNet (ILSVRC 2012) and Classify ing Cooking Object' State [3]
SqueezeNet [4]		18 layers	RelU	227x227x3	SqueezeNet: 1×1 and 3×3	SqueezeNet goal was to create small neu- ral network with fewer parameters. It was able to achieve a 50X reduction in model size compared to AlexNet. SqueezeNet has advantage of fire module, which uses less filters to decrease number of parameters	ImageNet datase fine-grained objec recognition [5 and Generic Visua Recognition [6]
DenseNet [7]	201	201 layers	ReLU	224x224x3	DenseNet: 7×7	In DenseNet, the feature-maps of all pre- ceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNet alleviate the vanishing-gradient problem and reduce the number of parameters	ImageNet (ILSVRC 2012) [8] and optica flow []
AlexNet [9]		8 layers	ReLU non- linear	227x227x3	Alexnet: 11x11, 5x5 and 1x1	AlexNet has large number of filters to perform the convolution operation of sizes 11×11, 5×5 and 3×3	ImageNet(LSVRC- 2010) and hig Spatial Resolutio Remote Sensing [10
GoogleNet [11]		22 layers	ReLU	224x224x3	GoogleNet: 5X5, 3X3 and 1X1	GoogleNet increases the depth of the net- work and gain a higher performance level. It is based on the concept of the inception module, it is the collection of convolution and pooling operation performed in a paral- lel manner so that features can be extracted using different scales	ImageNet(ILSVRC1 and Hig performance offlin handwritten Chines character recognitio [12]
Mobilenetv2 [13]	2	54 layers	ReLU6	224x224x3	Mobilenetv2: 1x1, 3x3	Mobilenetv2 improves the performance of mobile models on multiple tasks. Mo- bilenetv2 is based on an inverted residual structure	ImageNet, Face At tribute Detection [14
Xception [15]		71 layers	ReLU	299x299x3		Xception involves Depthwise Separable Convolutions, it is supposed to be more ef- ficient than classical convolution in terms of computation time. Xception relies on Shortcuts between Convolution blocks	ImageNet datase [16] Audio Event Detection and Tagging [17]
Inceptionv3 [18]	3	48 layers	ReLU	299x299x3	Inceptionv3: 3×3	In inceptionv3, computational efficiency and fewer parameters are realized	ImageNet(ILSVRC 2012) and flowe classification [19]
ShuffleNet [20]			RelU	224x224x3	Shufflenet: 1x1,3x3	Shufflenet aim to explore a highly efficient architecture specially designed for limited computing ranges. Shufflenet allows more feature map channels and it is especially critical to the performance of very small networks. ShuffleNet achieves 13x actual speedup over AlexNet while maintaining comparable accuracy	ImageNet, Mobile de vices [21] .

Object Detection

In our proposed approach, we applied vision.CascadeObjectDetector System object, It detects objects in images by sliding window over the image. Then uses a cascade classifier to decide whether the window contains the object of interest.

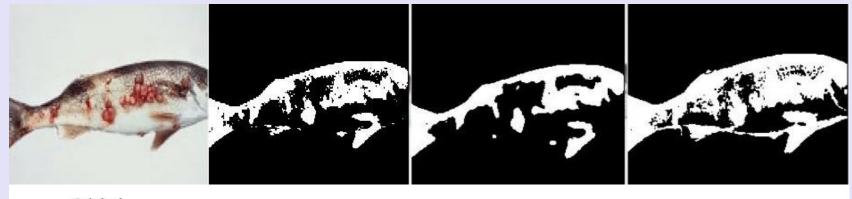
Tracking

Benchmark Trajectories for Multi-Object

Tracking Histogram-based object

Tracking vision. Point Tracker using KLT Algorithm

Segmentation Experiments 1/2


 For segmentation, we build the Gaussian model on XYZ, LAB and YCBCR color spaces. We found that EUS achieved good results in LAB color space, while ICH achieved good results in YCBCR color space and Columnaris in XYZ.

Color Spaces	EUS	ICH	Columnaris		
XYZ	51.9%	74.5%	85.8%		
YCBCR	60.1%	79.8%	30.3%		
LAB	79.7%	64.9%	16.1%		

fppt.com

Table 5.2: Segmentation Experiment on different color spaces

Segmentation Experiments 2/2

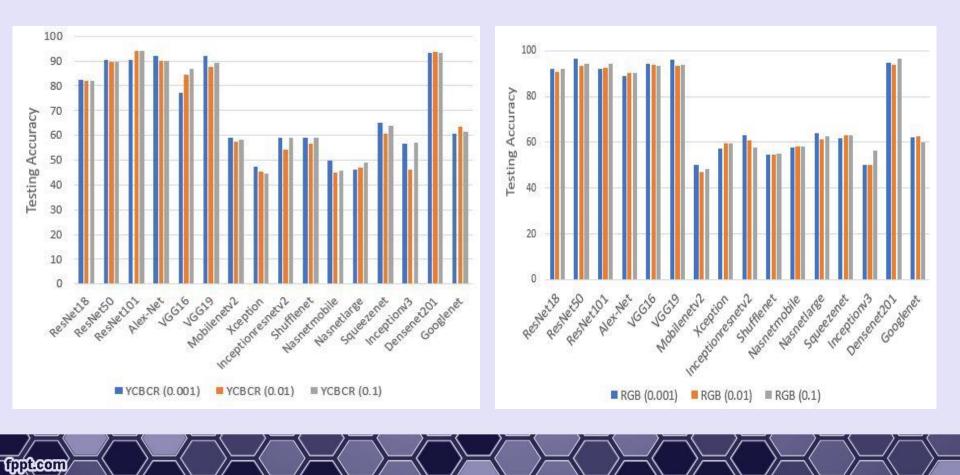
Original Image

LAB

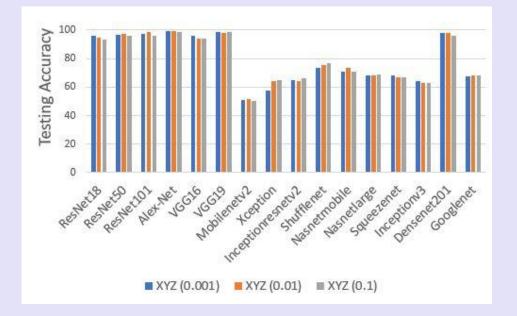
YCBCR

XYZ

Cnn Experiments 1/3


Achieved training accuracy result

Cnn Architectures	RGB(0.001)	RGB(0.01)	RGB(0.1)	YCBCR(0.001)	YCBCR(0.01)	YCBCR(0.1)	XYZ(0.001)	XYZ(0.01)	XYZ(0.1)
ResNet18	17,60%	14,50%	24,60%	13,60%	12,50%	12,50%	17,70%	18,50%	15,50%
ResNet50	18,70%	18,60%	15,60%	14,60%	15,50%	15,50%	24,50%	16,50%	16,50%
ResNet101	16,80%	14,%	16,50%	13,50%	14,50%	14,50%	15,50%	16,50%	19,50%
Alex-Net	12,60%	7,50%	9,60%	7,60%	9,50%	9,50%	8,50%	8,50%	8,60%
VGG16	14,50%	14,60%	14,50%	15,50%	18,40%	18,50%	16,60%	16,50%	15,50
VGG19	14,50%	14,60%	15,50%	21,50%	17,60%	14,60%	16,50%	15,50%	15,50%
Mobilenetv2	13,50%	7,60%	8,50%	17,60%	7,40%	7,40%	10,60%	9,60%	9,60%
Xception	12,50%	12,50%	11,50%	11,50%	16,60%	13,50%	13,50%	12,50%	12,60%
Inceptionresnetv2	11,50%	16,60%	12,60%	12,60%	11,50%	11,60%	15,50%	12,50%	12,60%
Shufflenet	7,50%	7,60%	7,50%	7,60%	7,50%	8,50%	21,50%	19,60%	15,60%
Nasnetmobile	9,50%	7,50%	7,60%	7,50%	7,50%	8,60%	15,60%	15,60%	15,60%
Nasnetlarge	13,60%	13,50%	15,50%	14,50%	14,60%	13,60%	14,50%	14,60%	14,60%
Squeezenet	7,50%	7,60%	7,50%	7,50%	7,50%	8,50%	8,60%	11,50%	8,50%
Inceptionv3	15,50%	14,40%	12,50%	15,60%	11,60%	11,50%	14,50%	16,50%	13,50%
Densenet201	6.53,60%	13,50%	7,60%	16,60%	7,50%	10,60%	12,60%	10,50%	7,60%
Googlenet	15,60%	14,50%	14,50%	14,50%	14,50%	16,50%	20,50%	16,50	19,50%


fppt:com

Cnn Experiments 2/3

Achieved test accuracy result

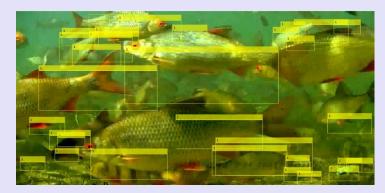
Cnn Experiments 3/3

Table 5.4: High	st achieved resu	lts when applying	different Cl	VN architectures
-----------------	------------------	-------------------	--------------	------------------

CNN Architec- ture	Colorspace- Learning rate	Testing accuracy	Training accuracy	Traning time
AlexNet	XYZ-0.01	99.0446%	50%	7min,51sec
DenseNet-201	RGB-0.001	94.9045%	60%	6min,53sec
ResNet101	RGB-0.001	92.3567%	80%	16min,46sec

Object Detection Experiments

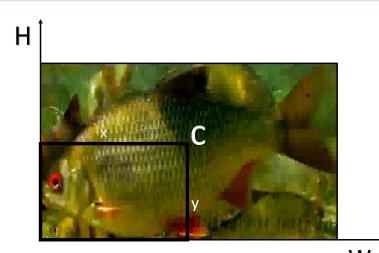
HOG Feature


fppt.com

HOG features are often used to detect objects such as people and cars. They are useful for capturing the overall shape of an object.

Haar Feature

Haar features are often used to detect faces because they work well for representing finescale textures.



In our experiment, HOG feature outperformed haar feature and it achieved good accuracy when applying 'MinSize' and 'Threshold' to enhance the detection to be more accurate

Video Trajectory Experiments

Matrix Creation

5	matrix2 ×		
	181x2 double	-	
	1	2	3
1	372	102.5000	
2	1.0745e+03	94	
3	670	199	
4	687	458	
5	458.5000	104.5000	
6	682.5000	197	
7	578	526	
8	288	331.5000	
9	428.5000	105.5000	
10	279	138.5000	
11	719	191	

W

Tracking-Scenario

- Waypoints: calculate the position for each bonding box in the matrix
- Velocity in the navigation coordinate system at each way point in meters per second, specified as an N-by-3 matrix

1 Time		2 Position				
0	-10.0800	202.6500	33.9418	-11.2800	8.8100	-0.0588
1.9608	-21.1200	211.2700	33.8846	-11.2500	8.7900	-0.0577
2.9412	-32.1300	219.8800	33.8287	-11.2100	8.7800	-0.0565
3.9216	-43.1000	228.4900	33.7738	-11.1600	8.7800	-0.0554
4.9020	-54	237.1000	33.7201	-11.0900	8.7900	-0.0543
5.8824	-64.8500	245.7300	33.6674	-11.0300	8.8100	-0.0531
6.8627	-75.6200	254.3800	33.6158	-10.9500	8.8400	-0.0520
7.8431	-86.3100	263.0700	33.5654	-10.8600	8.8800	-0.0510
8.8235	-96.9100	271.8000	33.5159	-10.7600	8.9300	-0.0499
9.8039	-107.4100	280.5800	33.4676	-10.6600	8.9900	-0.0488
10.7843	-117.8100	289.4300	33.4202	-10.5500	9.0500	-0.0478
11.7647	-128.0900	298.3400	33.3739	-10.4200	9.1300	-0.0467
12.7451	-138.2500	307.3200	33.3286	-10.2900	9.2100	-0.0457
13.7255	-148.2700	316.3900	33.2843	-10.1500	9.2900	-0.0447
14.7059	-158.1500	325.5400	33.2410	-10	9.3800	-0.0437
15.6863	-167.8800	334.7900	33.1987	-9.8400	9.4800	-0.0427
16.6667	-177.4500	344.1400	33.1574	-9.6700	9.5900	-0.0417
17.6471	-186.8500	353.5900	33.1170	-9.5000	9.6900	-0.0407
18.6275	-196.0600	363.1500	33.0776	-9.3100	9.8100	-0.0397
19.6078	-205.1000	372.8200	33.0391	-9.1100	9.9200	-0.0388
20.5882	-213.9300	382.6100	33.0016	-8.9100	10.0400	-0.0378
21.5686	-222.5500	392.5100	32.9649	-8.6900	10.1600	-0.0369
22.5490	-230.9600	402.5400	32.9292	-8.4600	10.2800	-0.0360
23.5294	-239.1400	412.6800	32.8944	-8.2300	10.4100	-0.035
24.5098	-247.0900	422.9400	32.8604	-7.9800	10.5300	-0.0342

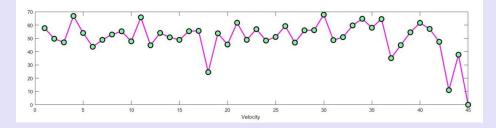
Track Segmentation

HOME PLO	Find Files	APPS	EDITOR	PUBLISH	(mail)	VIEW	R	Run Sectio	n 🕀	En la
12 (Compare 👻	Go To 🔻	Comment % 🗽	2		-				
w Open Save	Print 🔻	🔍 Find 👻	Indent 🛐 👼	Breal	kpoints ▼	F	Run and Advance	Advance	Run and Time	
FILE		NAVIGATE	EDIT	BREAM	POINTS			RUN		
🕪 🛅 💹 📕 🕨 C: I	► Users ►	Owner 🕨 Desk	ktop 🕨 Video 🕨							
orkspace	Cc	mmand Windo	w						🕤 📝 Edite	or - C:\Users\Owner\Desktop\Video\Videodetect.m
ame - Value		3 fish De	tect						^ Vid	leo.m 🛪 Detectxml.m 🛪 Videodetect.m 🕺 Untitled3.m 🛪 Cnn.m 🛪 yc.m 🛪 Mask.m 🛪 🕇
	3.517.20	1 fish De	tect						19 -	channel1Max = 149.000;
BW 720x12		2 fish De	tect						20	
channel1Max 149		2 fish De	tect						21	% Define thresholds for channel 2 based on histogram settings
channel1Min 70		0 fish De	tect						22 -	channel2Min = 0.000;
channel2Max 127		1 fish De	tect						23 -	channel2Max = 127.000;
channel2Min 0 channel3Max 126		2 fish De	tect						24	
channel3Min 85		1 fish De	tect:						25	% Define thresholds for channel 3 based on histogram settings
depVideoPlay 1x1 Dep	nlovabl	2 fish De	tect						26 -	channel3Min = 85.000;
detectedImg 720x12		2 fish De	tect:						27 -	channel3Max = 126.000;
Detector 1x1 Cas		3 fish De	tect						28	
faceDetector 1x1 Cas		1 fish De	tect						29	
frame 720x12		1 fish De	tect						30	
gTruth <u>12x2 ta</u> i 170	ible	1 fish De	tect:						31	% Create mask based on chosen histogram thresholds
1 720x12	2802211	3 fish De	tect						32 -	<pre>sliderBW = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) &</pre>
imageLabelin 1x1 Ses.		2 fish De	tect						33	(I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) &
imDir 'C:\User		1 fish De	tect						34	(I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max);
J 720x12		1 fish De	tect						35 -	BW = sliderBW;
maskedRGBI 720x12		0 fish De	tect						36	
myVideo 1x1 Vid	leoWrite	3 fish De	tect						37	% Initialize output masked image based on input image.
n 1 negativeFolder 'C:\User		2 fish De	tect						38 -	<pre>maskedRGBImage = videoFrame;</pre>
negative/mag 1x1 /ma		3 fish De	tect						39	
positiveInstan 12x2 ta		3 fish De	tect						40	% Set background pixels where BW is false to zero.
sliderBW 720x12	280 logi	4 fish De	tect						41 -	<pre>maskedRGBImage(repmat(~BW,[1 1 3])) = 0;</pre>
str '1 fish E	Detect'	1 fish De							42 -	<pre>bbox = faceDetector(maskedRGBImage);</pre>
str_n '1'		2 fish De							43 -	<pre>videoFrame = insertShape(videoFrame, 'Rectangle', bbox);</pre>
videoFileRea 1x1 Vid		3 fish De							44	
videoFrame 720x12 videoReader 1x1 Vid		3 fish De							45	% Display video frame to screen
naconcauci 121 viu		2 fish De							46 -	depVideoPlayer(BW);
		1 fish De	tect						47	
		>>							✓ 48	
	>	<						>	49	% Write frame to final video file

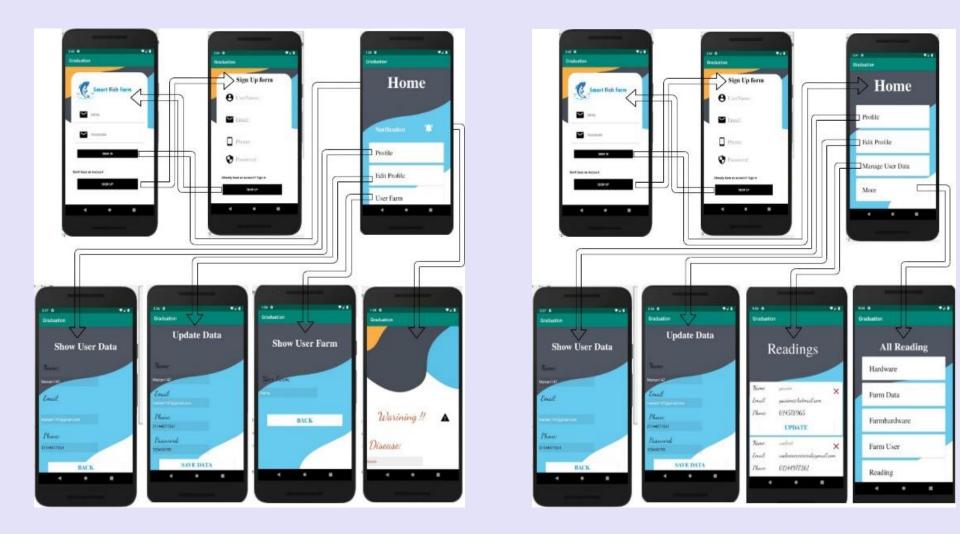
(pptcom)

Final result

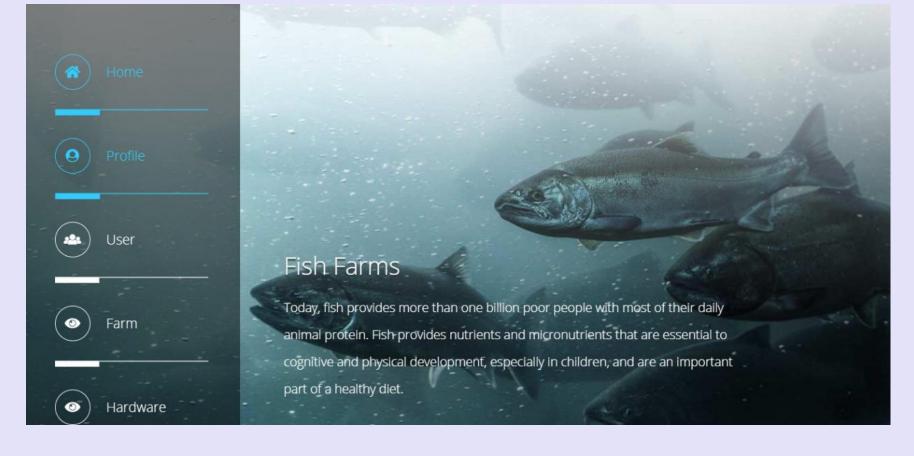
• In the tracking phase, Vision.pointTracker is applied by using the Kanade-Lucas-Tomasi (KLT) algorithm . The Estimate Geometric Transformation is then applied to determine the transformation between the point locations in the previous and current frames


Fish Tracking Experiments

After applying fish tracking, fish velocity is then calculated to help in the expectation of fish behavior.


The velocity is calculated my multiplying the distance of centroids between previous frame and current frame.

This is done by getting the video frame rate (frame/second), the video scale (meter/pixel).



User interface Android

(pptcom)

User interface Web

Data Augmentation Demo

Eile <u>E</u> dit <u>V</u> iew <u>N</u> avigate <u>C</u> ode <u>I</u>	Gefactor Run Lools VCS Window Help TemplateMatch - CLUsers\Owner\PycharmProjects\Graduation\GP.py - PyCharm — …
C: Users Owner PycharmProjects C	iraduation) 🖧 GP-py 📃 🖉 GP 💌 🕨 🛓 🐘 📃 🔍
👷 🔲 Project 👻 😲 😤 🗢	💑 GP.py 🗶 🐉 TempMatchMethods.py 🛛 🦓 TempMatch.py 🗵
	<pre>> Cimport > Folder_name="image" > Extension=".png" > Folder_name="image" > Odef scale_image(image, fx, fy, i): 10 image = cv2.resize(image, None, fx=fx, fy=fy, interpolation = cv2.INTER_CUBIC)</pre>
 God_Jogo.png messi5.jpg Template.jpg TempMatch.py TempMatchMethods.py IIII External Libraries Scratches and Consoles 	<pre>iii cv2.imwrite(Folder_name+"/Scale-"+str(fx)+str(i)+Extension, image) iii cv2.imwrite(Folder_name+"/Scale-"+str(fx)+str(i)+Extension, image) iii cv2.imwrite(Folder_name + "/Translation-" + str(x) + str(y)+ str(i) + Extension, image) iii cv2.imwrite(Folder_name + "/Translation-" + str(x) + str(y)+ str(i) + Extension, image) iii cv2.imwrite(Folder_name + "/Translation-" + str(x) + str(y)+ str(i) + Extension, image) iii cv2.imwrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.imwrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(deg) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i)+Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i) + Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i) + Extension, image) iii cv2.immrite(Folder_name + "/Rotate=" + str(de]) + str(i) + Extension, image) iii cv2.immrite(Folder_name + "/Rotat</pre>
 ▶ <u>4</u>: Run ☱ <u>6</u>: TODO ☑ Terminal □ PyCharm 2020.1.2 available: // Update (□ Q Type here to search 	3 minutes ago) 5 chars 922 CRLF UTF-8 4 spaces 9 20 CRLF UTF-8 4 spaces
β Type here to search	$\bigcirc Hi \ \underline{\textcircled{G}} \ \boxed{\textcircled{C}} \ \underline{\textcircled{C}} \ \underline{C} \ \underline$

Published in: 2019 14th International Conference on Computer Engineering and Systems (ICCES)

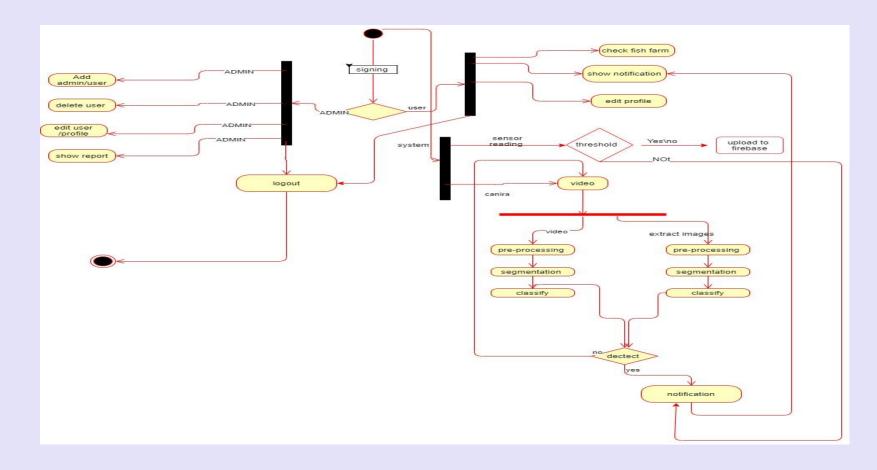
• <u>https://ieeexplore.ieee.org/document/9068141</u>

- Akhbar el youm news : Link
- youm7 news: Link

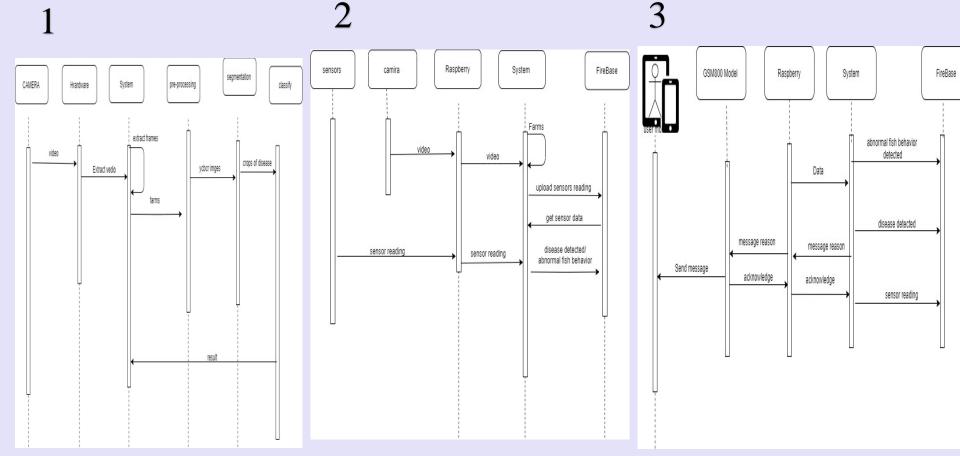
- Elwatann news: Link
- Gomhuria news: Link
- Ahram gate news: Link

User Expert

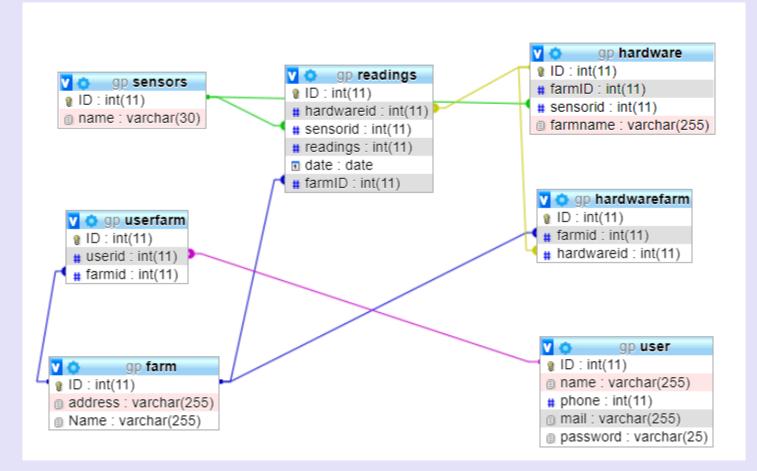
أ دكتور خالد احمد السيد رئيس مجلس إدارة الهيئة العامة للثروة السمكية



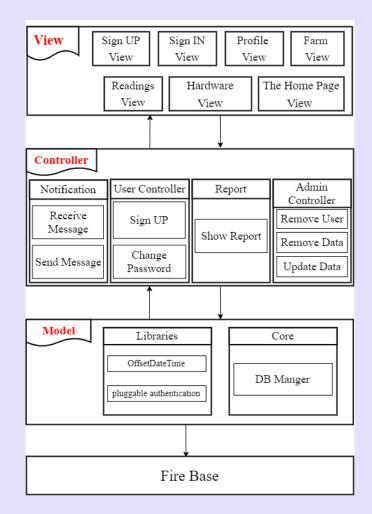
TH&NK YOU


Appendix

Activity Diagram



Sequence Diagram



Database Shema

MVC Architecture

Reference

1-https://www.worldatlas.com/articles/top-15-countries-for-

aquaculture-production.html

2-https://www.legit.ng/1210191-types-fish-farming-systems.html

3-<u>https://www.healthline.com/health/what-is-a-pathogen</u>

4-<u>https://thefishsite.com/articles/an-introduction-to-fish-health-</u>

management

fppt.com

- 5-<u>https://modestfish.com/fish-disease-guide/</u>
- 6-https://www.mayoclinic.org/diseases-conditions/mental-
- illness/symptoms-causes/syc-20374968

7-<u>http://arca-eg.org/wp-content/uploads/2017/06/Working-Paper-4-Jan.2017.pdf</u>

- 8-<u>http://www.fao.org/3/i9540en/i9540en.pdf</u>
- 9-<u>https://www.worldfishcenter.org/bio/ayman-anwar-ammar</u>
- 10-https://www.worldfishcenter.org/africa-aquaculture-research-
- and-training-center-aartc-abbassa-egypt
- 11-<u>https://www.worldfishcenter.org/location/egypt</u>
- 12-<u>http://www.fao.org/3/i9540en/i9540en.pdf</u>

- 13<u>https://www.researchgate.net/publication/321407380_Image_processing_techniq</u> <u>ues_for_identification_of_fish_disease</u>
- 14<u>https://www.researchgate.net/publication/305755582_Digital_Image_Processing</u>
 <u>Techniques_for_Detection_and_Diagnosis_of_Fish_Diseases</u>
- 15- <u>https://ieeexplore.ieee.org/document/4524222</u>
- 16<u>https://www.researchgate.net/publication/257825988_Detecting_abnormal_fish_t</u> rajectories_using_clustered_and_labeled_data
- 17<u>https://www.researchgate.net/publication/257825960_Detection_of_Abnormal_F</u>
 <u>ish_Trajectories_Using_a_Clustering_Based_Hierarchical_Classifier</u>
- 18 <u>https://www.cscjournals.org/manuscript/Journals/IJCSS/Volume9/Issue2/IJCSS-</u>
 <u>1013.pdf</u>
- 19- https://arxiv.org/ftp/arxiv/papers/1805/1805.10106.pdf

