Software Design Document for project Smart Planting

Randa Osama, Nour El Huda Ashraf, Amina Yasser, Salma Abd El Fatah,
Supervised by Dr. Ashraf Abd El Raouf, Eng. Noha El Masry

March 6, 2020

1 Introduction

1.1 Purpose

The main purpose of this document is to represent the architecture and the system design of
our Smart Planting system. Our proposed system is an automated greenhouse system that
control the LED lights and fans using real time cameras. Our system is accompanied with a
web application that enables the user to monitor their plant’s growth health. We also provide
a fulfilled illustration about each stage inputs and outputs, along with the development process
and a full illustration about the system components and their interaction together.

1.2 Scope

This document targets farmers and landowners that would use the Smart Planting system to
help them monitoring their plants’ growth rate and to get notified with their land’s important
updates which will save much time instead of visiting their land constantly. Meanwhile, the
system provides a less cost equipment for producing more plants while farmers and landowners
having double of their normal income, with less percentage of plants loss during their growth.
Our proposed system tends to automate the greenhouse for speeding up the plant growth using
LED lights, monitoring the plant health, increasing their production and detecting some certain
diseases. Frames are extracted from the real time cameras inside the greenhouse then performs
pre-processing to enhance the image, converting the image from RGB into HSV color format
and providing all the needed masking, then feature extraction takes place using HOG then
classification using One-Class SVM. Meanwhile, The system have the ability to learn different
types of diseases to enhance the accuracy in the future.

1.3 Overview

This SDD document includes 8 main sections. The first section is an introduction to our system
including our scope and purpose. The second section is the system overview illustrating our
system workflow. The third section includes the architecture design of the system, activity
diagram, sequence diagram, state diagram and class diagram. The fourth section illustrates the
database design in details. The fifth section illustrates our component design including the used
algorithms and techniques. The sixth section illustrates the human interface design and describes
how the user will interact with our system. The seventh section is the requirement matrix that
shows which components satisfy each of the functional requirements. The rest of the sections are
appendices and references.

1.4 Definitions and Acronyms

Term Definition
LED Light-Emitting Diode
RGB Red-Green-Blue color Model
HSV Hue-Saturation-Value
HOG Histogram of oriented gradients
MVC Model-View-Controller
OC-SVM | One-Class Support Vector Machine
DHT11 Sensor used for measuring temperature and humidity
LDR Sensor used for measuring the light intensity

2 System Overview

In Smart Planting system, in order to monitor the way of growth and the needs of any plant
they should be monitored by a video camera and sensors (DHT11 for measuring temperature
and humidity, soil moisture for measuring the water content in soil and LDR, for measuring the
light intensity), they are placed inside the green house.

In the data input stage, the system extracts 7 frames of the greenhouse every 5 minutes, then
these frames and sensors reading will be saved in the database.

Moving to the processing stage, by applying masking Hue-Saturation-Value (HSV) is used to de-
tect the desired color range of the plant and the desired color range of the fruit/vegetable. Mean-
while, extracting features from the frames such as the size, shape and color of the fruit/vegetable,
in order to detect the stage of the plant and if there is any diseases effected the plant then the
landowner will be notified. The results will help us classifying the plant stage to generate the
suitable LED light needed to be turned on.

These stages are:

1. Seeding stage, which seeds are being added to the ground but still no green leave being
produced.

2. Growing stage, which some green leaves are produced.
3. Flowering stage, which the plant starts to blossom.
4. Harvesting stage and that where the plants’ fruit is ready to be collected.

Ending with notifying the user if there is any diseases appeared on the plants or saving the
outputs in our database, if there is no diseases being detected.

Finally in the final output stage, the system starts doing it’s job, in providing the plant it’s
suitable environment to grow.

According to the readings from the sensors, if the temperature is higher than the threshold value
then the fans start to work automatically. otherwise the fans will be turned off.

The output coming from the classification, as mentioned above, it helped in detecting the plant
stage, if the plant is still in the Seeding or Growing stages then the Blue and Green LED lights
are turned on, and if the current stage is the flowering stage then the Red LED light will be
turned on, moving to the last plant stage which is the harvesting stage, the system goes to notify
the user that the crops are ready to be harvested.

Data input and pre-processing

Output

ey [|\

Video Camera

Sensors (DHT22
-PH- ol

input readings

input images

Pre-Processing

moisture - LDR -
NDIR)

no disease defected

| 0711 sensor reading temperature)

o0ling fan tums OFF

disease
detected

Masking and Feature
extraction

Classifier

Hanvesting stage

Seeding stage Growing stage

Flowering stage

Harvesting stage

High temprature Low temprature
Database Cooling fan tums ON
—
Classified data
Seeding and
aoeedea ol Flowering stage
) Switch Red LED
Switch Blue and Green LED lights ON lignts ON
noify

.\ar\dnwner

Figure 1: System Overview

3 System Architecture

3.1 Architectural Design

View
‘ User View ‘ ‘ Plants View ‘ ‘ Land View ‘ ‘ Statics View ‘ ‘ Classification View ‘
‘ Landowner View ‘ ‘ Led Color View ‘ ‘ Timer View ‘ ‘ Sensors View ‘ ‘ Notification View ‘
Controller
A

User Controller

Classification Controller Landowner Controller

def _hog(img,B);

iney: Signup();
asoan(; def hog(img,B); gnup();
ew(); def load_data(fruit, tipo, B, clase, testing,
Delete(); flag);
UpdateMyself(); def whole_train_data(tipo, B, flag): sencor Controfler
def train_model(data_train, data_test;: -
def get_precission(test_target, test): ADDSenesor();
Plant Controller DeleteSensor();
UpdtaeSensor();
AddNew(); | cvz | | numpy ‘ ‘ gieo | | svm | ViewSensor();
Update(); ——
Delete(); | rescale_intensity ‘ | StandardScaler |
View(): Notification Controller
Send();
Led Color Controller Timer Controller Receive();
. ADDTimer();
ngr\;?;()?’ DeleteTimer(); Statistics Controller Land Controller
Delete(); UpdtaeTimer(); View(); AddLandRequest(0;
View(); ViewTimer(); DleleteLandRequest();
' UpdateLandRequest();
ViewAllLand();
Model
Libraries Pre-Processing ‘ User Model ‘ Timer Model ‘

rescale_intensity

svm

StandardScaler

ConvertToHSV(imag);

‘ Plant Model ‘

Led Color Model

Classification Model | Sensor Model

Statistics Model

def run_svm(flag):

Notification Model

‘ Land Model ‘

|numpy| | svm |

Landowner Model

|

DataBase

Figure 2: Architectural Design

4

3.1.1 View

It is responsible for presenting the data for the user in a User Interface(UI), to make it easy for
the user to interact with our system. We have two different interfaces with different actions, one
for the admin and another one for the landowner, in order to different between both of the users,
first they have to pass by User View, which is a login page through which both users log into
our system, opening to a update info page which allows the user (both admin and landowner)
to see all their data and update any if needed. First, we start by the main Admin pages. As
an admin have got more views pages for hem/her than the landowner, as the admin could go
through the plant view, which gives the ability to add, delete and view all available plants in
our system. As well as led color view, the admin could add, delete and view all available led
colors. Time view, as this view page gives the ability for the admin to add, delete, view and
update time intervals in hours, minutes and seconds, these time intervals are adjusted for the
led strips on every king of plant being added in to the system. Land view and this view have to
different jobs, first the admins, it allows them to view all lands registered in the system, view
there requests, as for these requests it could be accepted or rejected according to the kind of the
request, second the landowners,they could only view their land and make some requests on them
only, as well as they could make a new request about adding a new land to the system. Statics
view, this is a common interface view between the admin and the landowner, both view statics
about the their plant growth weekly, while the admin view for the whole lands in the system
while the landowner for his land only. Sensor view, is for allowing the admin to add, delete and
view all king of sensors being used inside the greenhouses registered inside the system.

3.1.2 Controller

It is responsible for connecting both the View and Model together. All user interactions and
requests made in the view are sent to the database in order to be fetched, this is done by the
usage of the models. If these requests require a response it will be forward to the user through
the view. Some controllers like the User Controller is responsible for only the user actions
such as: login, adding a new user, deleting a user and updating him/her self. Plants Controller,
Timer Controller, Led Color Controller, Sensor Controller and Land Controller all of the previous
Controller are responsible for actions related to them as adding, deleting, viewing and updating.

3.1.3 Model

prepossessing:

A video camera is adjusted inside the greenhouse, which extracted image frames from it, these
frames requires some preprocessing to be done to it, which are converting the image to an HSV
image. This is done by the usage a library called cv2, this library is used in image processing,
video capturing and analysis that includes feature as feature extraction, which helped in getting
the perfect data for the system by which helped to move to the next phase in the system.
Libraries:

numpy: It’s a core library which stands for Numerical Python that used as an efficient multi-
dimensional container for generic data.

rescale-intensity: It’s a library that is used to change the intensity range of an image according
to the desired range.

glob:It’s a library that is used to define techniques to match a specific pattern.

StandardScaler: it’s a library that will transfer the data to have a mean equal 0 and the standard
deviation equal 1 Classification Model:

This model takes image frames from the database, after being preprocessed, it’s main role is to
classify the stage of the plant whether it’s seeding, flowering or harvesting.

The rest of the models as the User, Timer, Plant, Led color,Statistics, Notification, Sensor and
Landowner all of these models are responsible to talk to the database and get all the needed and
data of there function to be viewed for the user correctly.

3.2 Decomposition Description

3.2.1

Class Diagram

Plant

User_Model

+ID:Integer
+User_Typeld: Integer

+GenderString
+Mobile Bigint
+Mail:String
+Password String

User_Controller

User_View

<Interface>
IStatist

[ViewLogin()

Controller y)

lLogout(
[ResetPassword(
[Updateinfo()

loging, { ViewUpdate(User_Controlier y)

User_Type

EncryptPassword(String password b
DecryptPassword(String
HashedPassword 1
ResetPassword(String UserName
Updatelnfo(User_Model 1)

loginString UserName u.Siring Password p)
Logout()

~ID:String
+UserType:String

Admin_Model

+User_ID: Integer ‘Admin_Controller

AddUser(User_Model m) AdUsers

DeleteLandowner()

Adminaccspiiandowneraddrequest);

Adminrejectiandownerreques

Adminacceptiandeditedreques);
0Role()

ndowner_Model y),
Adminacceptiandovineraddrequest(Land I
Adminrejectiandownerrequest(Land I)
Adminacceptiandedtedrequest(Land I
AddRole();

+IDiInteger
+PlaniName:String
+PlantType:String
+NeededTimeString
+Land_IDiInteger

S

Sensor

+IDinteger
+Land_ID:String
String
+Date:Date
+Time-Time
+Reading:String

DeleteRole(User_Type y) 0
EdiRole(User_Tye y). DeleteRole()
AlRole(EditRole()
AddLedColor(LedSyste) i UIRole()
—| Viewte SetTimer()
DeleteLedColor(LedSystem). Timers()
AddSensor(Sensors). AddLed()
Viewsenors(Yol
DeleteSensir(Sensor s) Deletel =y

AddPlanet(Flant p)

View AllPIants(ViewSensor()

DeleteSensor();

¥

Delete Plant¢Flant plant)

wtatistics(viewStatistics()

‘Admin_View

ViewAddUser)
ViewDeleteLandovner(Landowenr_Controller c)

ViewAdminaccepiiandowneraddrequest)

ViewAdminacceptiandeditedreques
ViewAddRole()

+ID: Integer ViewDelete ()

+UserlD: Intsger ViewEditRole(Landowenr_Controller c)
+StatelD: Integer ViewAlRoles()

Landowner_hodel

DataBase_Helper

Preprocessing

ReadDataFromSensors(Sensor s)
ReadVideoFrames()

SaveFramesinDatabase(Frame 1)
ConvertRGBFramestoH SV(Frame 1)

compareColorFramePercentagewithihreshold(Frame f)

Feature_extraction

ExtractFeaturesFromFrames(Frame 1)

[+Host String
[+User String
[+PassString
+DB:String
[+MyConn:String
[+instance

lGatinstance()
|GetConnection(
|Adawithia()

lacd
lUpdate()

Fans

+ID:Integer
~Timelnterval-Time
~State: Boolean

Tumonfans(Sensot sensor)
Tumoffians (Sensor sensor)

[Detete

LeaLights

+IDinteger
+Land_ID:Integer

+RequestiDString

[Edit andowner(ID, User_Mode §
ISign Up(User_Model t, Land I)

[SendRequesi(Land {)

[ViewAllLandRequesty) ViewAllSensor();

[Deletel andRequest(Land t) ViewAddSensor()
n Y

ViewDelete Sensor(Admin_Controller) ¢

Landowner_Controlier

Observerclient class

[EditLandowner(

+ColorString
+Time:Time
+State_ID'Integer

Classification

TurnOffLED(SensorLands s
RunSVMdlassifier(Frame 1)
DetectingDiseases(Frame)

SendNotification(Landovner |, Notification n)
‘TumOnLED(SensorLands s, LedLights 1)

LedLights

Frame

+Diinteger
+~Name:String

+DateTime Siring
Integer

+Stage_ID: integer

+ID:Integer

[+Landowner_iD:integer
[+Content_IDInteger
[+Land_IiD:Integer
[+Date_and_Time:String

n N [Signup():
Sy estonm) SendRequest(o
- atacn) [AIRequesis(
Viewnotication()
Notfications
Landowner_view
10 Integer

|ViewEdit(Landowmer_Controlier x)
\ViewSignup(Landowner_Controler x);
ner_Controller x

and
|ViswAlRequests()
i ndowner_Controller

[+add)
[eview(

+Landowner_ID:Integer
+State_IDrInfeger

Figure 3: Class Diagram

| L

DataBase_Helper

——»|+Host:String
+ser5tring
+Pass. Siring
+0B:5String
+MyConn:String
+instance

¥

Getinstance()
GetConnection()
Addwithld()
addi)

Update()
Delete()

Figure 4: Singleton design pattern

Observerclient class

+add(Motification n)
+notify()
+attach()

Motifications

+D: Integer
+Landowner_|D:Integer
+Content_|ID:Integer
+Land_ID:Integer —
+Date_and_Time: Siring

+add()
+yfiew()

T

Figure 5: Observer design pattern

User_Model

User_View

ViewLogin()

+D:Integer
+User_Typeld: Integer
+First_Name:Siring
+Last_Name:Siring
+Family:String
+DateQfBirth:Date
+Gender Siring
+Mobile:Bigint

+Mail: String
+Password:String

Viewlogout():

User_Controller
ViewResetPassword(User_Controller)

login();
Logout(); .
ResetPassword(); o

/j

Logout(),
EncryptPassword(String password)
DecryptPassword(String
HashedPassword t);
ResetPassword(String UserName t)
Updatelnfo{User_Maodel 1)

login(String UserName u,String Password p)

Updatelnfo() B
Admin_Mode!

+User_|D: Integer

User_Type

+D:String
+UserType:String

AddUser(User_Model m);
DeleteLandowner(Landowner_Model y};
Adminacceptiandowneraddrequest(Land Iy;
Adminrejectiandownerrequest(Land I)

Adminacceptiandeditedrequest(Land I)
AddRole()

=Interface=
IStatistics

+viewStatistics()

M Viewlpdate(User_Controller y); o

Admin_Controller

AddUser();

DeleteLandowner()
Adminaccepilandowneraddrequest();
Adminrejectiandownerrequest();
Adminacceptiandeditedrequest();

Sensor

+ID:Integer
+Land_ID:String
+Name: String
+Date Date
+Time:Time

+Reading:String

+—

AliRole{)
AddLedColor{LedSystem I},
— ViewLed();
DeleteLedColor(LedSystem I);
AddSensor{Sensor s)
ViewSenors();
DeleteSensir(Sensor s);
AddPlanet(Plant p)

View AllPlants()

Delete Plant{Plant plant)
viewStatistics()

DeleteRole{User_Type v)
EditRole(User_Type y);

AddRole().
DelsteRole()
EditRole();
AllRole():
SetTimer(),
Timers();
AddLed()
ViewLed();
DeleteLed();
Addsensor();
ViewSensor();
DeleteSensor()
viewStatistics()

Y

Landowner_Model

DataBase_Helper

+Host:String
+User:String
+Pass:String

+DB:String
+MyConn:String
+instance
Getinstance()
_|GetConnection()
|Addwithld()
add()
Update()
Delete()

LedLights
+D:Integer
+Land_ID:Integer
+Color:String
+Time:Time
+State_ID:Integer

+ID: Integer
+UserlD: Integer
+StatelD: Integer
+RequestiD:String

EditLandowner(ID,User_Mode),
Sign Up(User_Maodel t, Land 1)
SendRequest{Land 1)
ViewAllLandReguest();
DeleteLandRequest{Land t)
ViewNofifications{Notification t);

Admin_View

ViewAddUser()

ViewAdminacceptiandowneraddrequest()
ViewAdminrejectlandownerrequest(
ViewAdminacceptlandeditedrequest();
ViewAddRole()

ViewDelete();
ViewEditRole{Landowenr_Controller c)
ViewAllRoles();

ViewTimer()
ViewAddled{Admin_Controller c);
ViewDeleteLed()

ViewLed();

ViewAllSensor().

ViewAddSensor();
ViewDeleteSensor(Admin_Controller) ¢;
[viewStatistics()

[viewStatistics()

Landowner_Controller

Observerclient class

+add(Notification n)
+notify()
+attach()

Signup():

EditLandowner();

SendRequest(0;
\AllIRequests(),
ViewNofification();
viewStatistics()

Notifications

+D: Integer

Landowner_View

ViewDeleteLandownar(Landowenr_Controlier c)

+Landowner_ID:Integer
+Content_|D:Integer
+Land_ID:Integer
+Date_and_Time:Siring

+add()
+view()

Figure 6: MVC design pattern

ViewEdit{Landowner_Conroller x)
ViewSignup(Landowner_Controller x);
ViewSendRequest{Landowner_Controller x);
ViewAllRequests();
ViewNofifications{Landowner_Controller x);

viewStatistics()

Class Name User_ Model

Super Class None.

Sub Class Admin_Model, Landowner_Model,Datebase Helper classes

Purpose Main class that is used to encapsulate different user types with their common

attributes.

Collaborations

Admin_Model and Landowner_Model inherit from it.
This class associated with database_Helper class.
User_Controller aggregates from it.

Attributes 1D, UserTypeld,FirstName,LastName,FamilyName,DateQfBirth, Gender, Mobile, Mail,
Password.
Operations Login(5tring UserName u,5tring Password p)
Logout()
Encrypt password(String password t)
Decrypt password(String Hashed_password t)
Resetpassword(String UserEmail t)
UpdateinfolUser_Maodel t)
Class Name Admin_Maodel
Super Class User_Model
Sub Class User Type,Database Helper,Sensor,Timer,Plant,Land
Purpose This class is used to represent the admin.

Collaborations

This class inherits from User_Model.

Admin_Controller class aggregates from it.

This class associated with Database_Helper,User_Type, Sensor, Timer,Plant and Land
classes.

Attributes

User|D.

Operations

AddUser{User_Maodel m)
Deletelandowner({Ladowner_Model y)
Admin_accept_land_add_request{Land)
Admin_reject_land_add_request(Land I}
Admin_accept land edited request(Land [}
AddRole{)

EditRole(User_Type y)
DeleteRole(User_Type y)

ViewaAll()

SetTimer(Timer t)

ViewTimer();

AddLedColor(LedSystem 1};

Viewled ();

DeleteledColor(LedSystem I};
Addsensor();

ViewSenors();

DeleteSensor(Sensor s);
AddPlanet(Plant p)

View AllPlants()

Delete Plant(Plant plant)
viewStatistics()

Class Name Landowner_Maodel

Super Class User_Model

Sub Class Database_Helper,Notification,Land,Landowner_Controller
Purpose This class is used to represent the landowner.

Collaborations

This class inherits from User_Model class.
Landowner_Controller class aggregates from it.
Database Helper,Notification and land classes are associated with it.

Attributes 1D, StatelD, UserlD, RequestiD.
Operations EditLandowner(ID,User_Mode t);
Sign Up{User_Model t, Land |)
SendRequest{Land t);
ViewallLandRequest();
DeletelandRequest(Land t)
WiewMotifications{Notification t);
viewStatistics()
Class Name UserType
Super Class None.
Sub Class Admin_Model
Purpose This class is used to differentiate between user roles.
Collaborations | This class inherits from User_Model class and State class.
Attributes 1D, Role.
Operations None.
Class Name Land
Super Class None.
Sub Class Landowner_Model.
Purpose This class is used to represent the land owned by which landowner in the system.

Collaborations

This class aggregates with sensor,Plant,Frame
This class associate with Fans and Admin_Maodel

Attributes

1D, LandownerlD,StatelD.

Operations

None.

10

Class Name Notification
Super Class Content
Sub Class Landowner_Model.
Purpose This class is used to send notifications to landowners.
Collaborations Land class is associated by Landowner_Model, Observation client class.
Attributes 1D, ContentlD,Land|D, Landowner|D,DateTime.
Operations Addi)
Wiew()
Class Name Plant
Super Class None.
Sub Class Land,Admin_Model.
Purpose This class is used to represent the different type of plants.
Collaborations Plant class associated with Admin_Model while it aggregates with Land class.
Attributes 1D,Mame,PlantType,PlantNeededTimelnterval,Land |D.
Operations None.
Class Name Timer
Super Class None.
Sub Class Plant.
Purpose This class is used to set the timer to switch on/off the LED strips.
Collaborations Timer class associated with Admin_Model class.
Attributes 1D, Duration.
Operations None.
Class Name Fans
Super Class None.
Sub Class Land,Sensors.
Purpose This class is used to switch on/off fans.
Collaborations Fans class associate with land and sensor Classes.
Attributes 1D, Timelntervals,StatelD.
Operations TurnOnFans{Land|D,Sensor)

TurnOffFans|LandID,Sensor)

11

Class Name LED Lights

Super Class Admin Model

Sub Class Mone.

Purpose This class is used to adjust the suitable led color to the land.

Collaborations Admin_Model associate with this class.

Attributes 1D, Color,LandID,StatelD, Time.

Operations None.

Class Name Sensors

Super Class Admin Model,Fans

Sub Class Land

Purpose This class is used to get the sensors readings from the database.
Collaborations It aggregates with land class and associate with Admin_Model,Fans classes
Attributes ID,Name,Land_ID,DataTime,Readings.

Operations None.

Class Name Frames

Super Class None

Sub Class Land.

Purpose This class is used to take images from a real time camera inside lands and convert it

into frames.

Collaborations

This class is aggregated with land class.

Attributes ID,Name,TimeDate,LandID,Stage_ID.
Operations None.
Interface name IStatistics
Super Class MNone
Sub Class Admin_Model,Landowner_Maodel
Purpose This interface is used to view statistics in different user views.
Collaborations Admin_Model and Landowner_Model Implements from this interface
Attributes None
Operations ViewStatistics()

12

3.2.2 Activity Diagram

Landmmer—‘

Signup

Login

Send request for

adding new land

Dismiss
land
request

Receive
notifications

[—Lonc u\m:rTAdmm

Update
his/her
profile

View statistics

ot |

Add new
plant
type

View all plant

Delete
plant
type

Add new time
interval

View all
time
intervals

Update time
interval

Delete
time
interval

Accept request

for adding new
land

Reject request

of adding new
land

Add new LED
color

View all
LED

colors

Take image

el

Switch LED

colors

Save resulis

Delete LED color
Accept updating
land

ject
updating land

Accept delefing
land

Reject
deleting
land

Add new sensor
type

View all
sensor fypes

Delete sensor
tyoe

View
statistics

Logout

Figure 7: Activity Diagram

13

Feature
exiraction

Save results

3.2.3 Sequence Diagram

f); LV:LandView LC:LandController

Landowner

| i
| AddLandReguest |
P— g
|
|

Show Reguest Form

Fill Form
A
Validate entered data

¥

AddLandRequest(LM)

Y

Add

B &

v

Success

Success

Mot Updated Bl

R —

Figure 8: Landowner adds new request

The sequence diagram in Figure 8 views how a request done by the landowner to add a new
greenhouse moves inside the system. First, the landowner fill the request form viewed in the
landView page, the data taken from the form goes to the land Controller which is consider as
a connection tube between the model and view, then to the land Model, to end up with saving
the data in the database.

14

f); LV:LandView LC:LandController LM:LandModel

Landowner T 1 1 i
| | | |
DeleteLandRequest | i i i
_s | | |
i i i

Show Request Form]]]

Fill Form
T
Validate entered data

L

DeletelandRequest(LM)
> Delete

B
v

Data found

Success

Deleted o mmmmmm e

Not Deleted rormmmmmmn oo

Figure 9: Landowner requests to delete the land

The sequence diagram in Figure 9 explains how the landowner can send request to delete
his greenhouse from the system. First, the landowner sends a request to the admin to delete
his greenhouse by filling the required form which is viewed in LandView page,validation is done
on the data entered by the landowner, then this data will move to the LandController, then to
LandModel ending to be saved the data in the database that his greenhouse is deleted successfully.

15

f); LV:LandView LC:LandController LM:LandModel

Landowner T T T T

| | | | |

i UpdateLandRequest | i i i

—’_]] i

! | | :
I i i i

Show Request Form

Fill Form
T
Validate entered data

L

UpdateLandRequest()

Y

Add

S
v

Success

Success

Not Updated rormmmmmmn oo

Figure 10: Landowner requests to update the land

The sequence diagram in Figure 10 explains how the landowner can send request to update
his greenhouse’s information in the system. First, the landowner sends a request to the admin to
make some modifications to his greenhouse by filling the required form viewed in the landview
page,then the system will make validation on the entered data, then the data taken from this
form will move to the landController, then moves to LandModel, to end up with saving the new
data in the database successfully.

16

CaptureCamerFrames.py

Main System.py

Classifiction.py

CM:Classifiction Model

Pre-processing

Captureimage()

Main()

alt

If{cpa.isOpened()==False)

ERROR

While(cap.isopened()):

ERROR

inserdBLOB(a.imageid)

»
>

ConvertRGBtoHSV(img)

»

>

_hog(img, B):

Figure 11: Pre-Processing

17

The sequence diagram in Figure 11 explains how preprocessing is done in the system, as
first images are being captured through the CaptureCameraFrames python class, moving to the
MainSystem python class through the main function, while moving the images passes through
some conditions which are checking that the camera is opened, if it’s opened then an error message
is sent, else the images passes through MainSystem python class through inserBLOB(a,imageid)
that takes the image id saved in database. Moving to the Classification python class through
convertRGBtoHSV (img) and this function do convert the image from RGB to HSV, ending the
Classification Model through the -hog(img,B)

FeatureExtraction Classification.py test Model Main System.py Led Strips

Automated System
HOG(img)
—_—
whole_train_data(tipo.B flag)
train_model(data_train, data_test)
Result
S
Main()
alt
Tl if ratio_green >- Change Green/Blue
Threshold ohet Red Lioh
and result ="tomato”: ight to Red Light
elif ratio_red >=
Threshold Keep Red Light
and result ="tomato”:
U U u Notify ToHarvest()
else Keep Blue/Green Light
System Success
<

Figure 12: Automated and Classifier

The sequence diagram in Figure 12 explains how our system is fully automated syetm, as
first we start by feature extraction this is done through the function -hOG(img), moving to
the Classifiaction python class through the function whole-tain-data(ripo,B,flag), then the test
Model through the tarin-model(data-tarin,data-test), while moving to the Main System Python
class a Result is being send back, this result is a string saying if there is tomatoes or not. Moving
to led strips by some functions depending on some if conditions as showen in the above diagram.
Ending with a system success statement.

18

Lv:Land View LC:Land Controller

LM:Land Model Database

Admin

Login{email,password);

AcceptRejectLandRequest
($Request);

AcceptRejectLandRequest();

AcceptRejectLandRequest();

get All Lands ID

get Land

send Land

Show Land

AcceptiReject Land

Select Land Land Id

Land state change

Saved Successfully

Figure 13: AcceptRejectLand

The sequence diagram in Figure 13 explains when the admin accepts or rejects a request
coming from the Landowner. First the admin have to login with there mail and password, the
admin chooses the view request link page to move to the Land controller, sending a request to
the model to fetch all the requests from the database, and then getting all the land ids’ that
have requests only to be sent to the controller moving to the view, so the admin could accept or
reject, when the action is done by the admin, this action is passed from the view to the controller
then the model to be saved in the database.

3.3 Design Rationale

We have some design patterns to make our system maintainable. As we used Model-View-
Controller (MVC) as helped us to make modifications easily, Single-Tone design pattern for
reducing the overhead while connecting to the database and observer design patter for allowing
different notification content for the users as not all of our users receives the same notification
message. Our system is very accurate as it takes some actions at a specific time. So, it should
be developed in an efficient and reliable way. We used some algorithms to make the accurate
detection, feature extraction and classification of fruits/vegetables. Those algorithms are HSV,

HOG and OC-SVM.

19

4 Data Design

4.1 Data Description

content

Drint(11)

(Contentvarchar(20) ser
TDant(i1) — D:int(11) B
lsusertype_ID:int(11) loendervarchar(s0)

Diint(11) [FirstName:varchar(50)
[puser_ID:int(11) lLastName varchar(50)
DateOfirtn date
[#Genderint(11)
[éMobile:bigint(20)

notfcation
iDnt(11)
[#landowner_ID:int(11)
fcontent IDint(11)
[#land_ID'int(11)
RateTime daieime

landowner

iDint(11)
fuser_ID-int(11)

[Email varcnar(100)
Password text
[CreatedDateTime datetime
LastUpdateDateTime:datetime
[#isDeleted:tinyint(1)

tans
iD-int(11)

sensor_readings

DNty
[eLand_IDint(11)
[eSensor_ID:int(11)
[Reading text
[DateTime datetime

#:Land_ID:int(11)
[DateTime datetime
[Fopenedtinyint(1)
land ID:int(11)
®: and_ID:int(11)
Item ToBeUpdated varchar(100)

)
\#landowner_ID:int(11) [e | INewValue-text
#:State_ID:int(10)

l4address_IDint(10)
iDint(11) / (CreatedDateTime datetime
[Statevarchar(20) LastUpdateDateTime:datetime

location:text
|sDeleted tinyint(1)

usettype [#greenhouse_L double
IDnt(11) l#greennouse_W-double

address
iD7nt(T)

IName varchar(100)
[gParent_IDiint(10)

links p— Irypervarchar200) [areenhouse_H:double
Dini(1) CreatedDateTme datetime g plantType 1D int(11)
[PhysicalAddress varchar(0) D ni(11) LLastUpdateDateTime:datetime prstate_IDuini(11)
[FriendlyAddress varchar(50) [fuserType_ID:int(10) IsDeleted tinyint(1) [#updateRequest.tinyint(1)

finks_ID:int(10) l4deleteRequesttinyint(1)

e e datene (CreatedDate Timedatetime (CreateaDateTime:datetime

LastUpdateDateTime:datetime e e

[eDeietectimint(l) Lestpeaepaterine aateume LastUpdateDateTime:datetime
sDeleted inyin §

testing_threshold

iDiint(11)
yLand_ID:int(11)

F:Stage_IDint(11)
[¢Percentage-double
stage
ID:int(11) plantreedled
|Stage varchar(50)
ID-int(11)
f#Stage_IDint(11)

y:Plant D int(11)
B:LED_TDint(11)

images

iDiint(11) images_frames

IName:varchar(50) iDint(11)
y#image idint(11)
[#Frame_ictint(11)
ram; D
rame [Land_iDrint(11)
iDiint(T1)
IFrame:iongbob

[Time:
training_thershod -

iDint(11) preen -

)

[#Plant_ID:int(11) T~

(#Stage_IDiint(11 iDvint(11) o IDvint(
apergeimgle ((mu)ble [plantName ediights [#Land_ID:int(11)

iDint(11) paeze
[color-varchar(50) I#openedtinyint(1

timer

iDint(11)
[#Plant_IDint(11)
[#HourTobeOpened:int(11)
[#HourTobeClosedint(11)

Figure 14: Database Schema

user: This table contains:id, userType-ID as we have two users in our system they are Admin
and Landowner, FirstName, LastName, DateOfBirth, Gender, Mobile, Email, Password, Cre-
ateDateTime,LastUpdateDateTime andIsDeleted.

userType: This table contains: 1D, Type, CreateDateTime,LastUpdateDateTime and IsDeleted.
landowner:This table contains: ID and user-ID.

admin: This table contains: ID and user-1D.

land: This table contains: ID, landowenr-ID, address-ID, location,greenhouse-L, greenhouse-
W, greenhouse-H and they represent the greenhouse size, plantType-ID as this system is trained
to have different types of plants, state-ID, updateRequest, deleteRequest as a landowner they
have the ability to make a request about the greenhouse if there is a new one to be added
to the system or a new update of an already existing greenhouse in the system, CreateDate-
Time,LastUpdateDateTime and IsDeleted.

state: This table contains: ID and State.

content:This table contains:ID and content.

address: This table contains: ID, Name and Parent-ID.

frame: This table contains: id, Frame and Time.

ledsystem: This table contains: ID, LED-ID, land-ID,Date, opened.

20

plantneededled: This table contains: 1D, Stage-ID and Plant-1D, LED-ID.
image-frames: This table contains: Id,Image-Id,Frame-Id and Land-ID.

landupdaterequests: This table contains: ID, Land-ID as every land have got it’s own request,
ItemToBeUpdated and that represent the item inside the greenhouse that will be updated, New-
Value, State-ID, CreateDateTime,LastUpdateDateTime and IsDeleted.

timer: This table contains: ID, pant-ID, HourTobeOpened and HourTobeClosed.
fans: This table contains: ID, Land-ID, DateTime and opened.
ledlights: This table contains: ID and color of the led lights that will be used in he system.

usertypelinks: This table contains: ID, userType-ID links-ID, CreateDateTime,LastUpdateDateTime
and IsDeleted. This table is done to separate between the links that the Landowner and Admin
will be able to view in the web applicationn.

stages: This table contains: ID and Stage.
plant: This table contains: ID and plantName.

links: This table contains: ID, PhysicalAddress, Friendly Address, CreateDateTime,LastUpdateDateTime
and IsDeleted. This table is done to save the links that will be used in our web application. The
PhysicalAddress is the real ink address while the FriendlyAddress is the address that the user

will see, it’s written in a way the user would understand.

gender: This table contains: ID and gender.
images: This table contains: Id and Name.

notification: This table contains: ID, landowner-ID, content-ID, land-id and DateTime.

4.2 Data Dictionary

Security is achieved through our web application, as the user which is the Landowner should first
register in the system, so both of the Admin and Landowner have their own account and no one
could access it, only if they have the password, so passwords are being encrypted and decrypted
in the system.

Reliability is achieved through our greenhouse, as any greenhouse in our system is supplied by an
Electric generators to insure that if the power goes off, generators will support with the needed
electricity.

Maintainability is achieved through our web application as it is programmed using MVC to apply
any changes by the developer easily, Single-Tone as to insure that there is only one connection
to the database and that helps in avoiding any over head on the system, Observer so the user
could be notified with any notification inside the system and design patterns.

Portability is achieved as our web application could be viewed on different platforms. Usability
is achieved through our web application as it’s easy for the user to learn and interact with it.

21

5 Component Design

Data Input

Sensor Readings

Image Frames

<=
Temp<= Threshold value DHTA

Pre-Processing

|

Masking and
Feature Extraction

Fans are turned
OFF

Temp> |Threshold value

Fans are turned
ON

YES NO

Classification

Notify the User Harvesting Stage Seeding Stage
Blue and Green LED

strips are ON

Flowering| Stage

All LED strips are
OFF

Red LED strips are ON and
Blue and Green are OFF

Figure 15: Flow chart of the system approach

22

5.1 Data Input

In this phase, there are two types of data inputs. First, the data coming from the sensors by the
usage of an Arduino are passed and saved in the database. First we check on the temperature
by the DH11 sensor, the readings of the sensor is compared with an adjusted threshold value.
This Threshold value is changeable according to the plant type inside the greenhouse. Since
our experiment is done on tomato so, the threshold value of the temperature will be 21-29.5°C
during the day and 18.3-21.1°C during the night. According to the readings, fans will be turned
ON/OFF to make a suitable temperature in the greenhouse. The second data input, is a collection
of image frames coming from a real time camera settled in our greenhouse. Pre-processing and
processing are operated on these frames as Enhancements, Masking and Feature extraction.

5.2 Pre-Processing

In this phase, Enhancements could be applied to image frames if needed, and that in order to
remove any added noise in the frame to make it prepared for the processing stage in the system.

5.3 Processing

In this phase, both Masking and feature extraction are done on the input frames. First, we start
by the masking, since all the input frames are RGB we start by converting them into HSV, as
HSV separates image luminance from color information. Which makes it easier to deal with all
image frames,as shown in figure 16.

Figure 16: Before and after the HSV masking effect on tomatoes’ testing image

Second, Feature extraction. Feature extraction is done by the usage of HOG.

gxr = ones((8,8)) * cos(pi/4)
gy = ones((8,8)) * sin(pi/4) (1)
h = HOG8z8(gx, gy)

First, the Image will be converted into grey value image. Then get the HOG value (h) in
8x8 cell using equation (1), where the gz is the x-directional derivative, gy the y-directional
derivative.

While masking and feature extraction are in process, a disease could be detected, since our
experiment is on tomato, so the most common diseases are the late Blight and the Early Blight,
as shown in both figure: 5 and 6 . When any of these two diseases are detected the user will be
notified, while the system is still in process.

23

Figure 17: Tomato effected by Early Blight

Figure 18: Tomato effected by Late Blight

5.4 Classification

In this phase, the model starts by detecting stages of the plants growth. We used One-class
Support Vector Machine (OC-SVM) classifier as it shows great accuracy [1]. It is a statistical
machine learning algorithm applied on data that has only one class, which is the “normal” class.
OC-SVM basically separates all the data point from the origin, then maximizes the distance from
this hyper plane to the origin. The function returns 1 if there is any fruits/vegetables appeared
while it returns -1 elsewhere.

f(x) = Sgn(z ;K (z,2;) — p) (2)

This method in equation (2) creates a hyper plane characterized by p which separates all
the data points from the origin, ai is the Lagrange multipliers computed for each distance and
K(z,xi) is the Kernel.

This phase classify the stages of the plant, whether it’s still in the seeding stage, or the
flowering stage, or it’s ready to be harvested. When the plants reach the harvest stage, the
system automatically notifies the user, and the system goes down.

6 Human Interface Design

6.1 Overview of User Interface

Our system Smart Planting user interface is easy to be used. You can login whether you're a
Landowner or an admin. The system leads you to different screens depends on your role. Admins
will be able to CRUD on most of the system such as, accepting/rejecting landowners’ requests
to add new greenhouses. While landowners are responsible for dealing with their greenhouses.
In fact, representation for the whole system will be shown in the upcoming sections (6.2, 6.3).

24

6.2 Screen Images

< C Y @ localhost/smartPlanting/page-loginphp * 0@ @ :

\0/

SMART PLANTING

Hello there, Sign in and start managing your areenhouse

=
&
Remember Me Forgot Passworcl?
SUBMIT >
Dont have an account? Sign up
Figure 19: Login-Page
< G Y ® localhost/smartPlanting/page-registerphp * @8 T @

\0/

SMART PLANTING

Signup

mm/dd/yyyy

Male ¥ EIN

Figure 20: SignUp page one

25

&

&

C Y @ localhost/smartPlanting/page-register.php

* 08 T@Q

mm/ddfyyyy I8

Male v BN

=

4

&)

]

SUBMIT =
Already have an account? Signin
Figure 21: SignUp page two

@ © = o °

C @ @ localhost/smartPlanting/updatemyself.php

Wy

SMART PLANTING

First Name*

Randa

Family Name®
Rashad

Date of Birth*

03/01/1999

Mobile Number*

01128931312

Gender*

Female

Update your info

Figure 22: Admin Updating his/her INFO

26

<«

C 0 @ localhost/smartPlanting/viewAllLandowners.php

Wy

SMART PLANTING

View Your Land Requests & Withdraw A Request If You Want

Show 10 - entries

D T Email

2 randaosamal1999@zmail.com

Showing 1to 1 of 1 entries

Search:

Land ID Plant Type

2 Bell Pepper

Previous Next

Wy

SMART PLANTING

View Your Land Requests & Withdraw A Request If You Want

Show 10 B entries

Greenh
D 4 Location resnnouse
Dimensions

. First settlement, block 5, Calro, New 120X 70k 110

Cairo

Showing 1to 1 of 1 entries

Plant
Type

Tomato

Figure 23: Admin Viewing All Landowners

Search:
View Update Accept Delete
Request Request
Sy v

Figure 24: Admin Viewing All Requests

27

& G Y @ localhost/smartPlanting/AddNewPlant.php % @ @ = o o :

©
W
SMART PLANTING
Add new Plant
Plant Type*
Add
Figure 25: Admin Adding New Plants
< C (3 @ localhost/smartPlanting/DeletePlant.php * @B @
©
W
SMART PLANTING
Delete Plant
Plant Type*
Tomato v

Figure 26: Admin Deleting Plant

28

< G 0} @ localhost/smartPlanting/ViewAllPlants.php

View All Plant Types

Show 10 B entries Search:

* @8 %@

©
Wy
SMART PLANTING

D T4 Plant Type
1 Tomato
2 Bell Pepper
3 Cucumber
Showing 1 to 3 of 3 entries
Previous Next
Figure 27: Admin View All Plant
< C (Y @ localhost/smartPlanting/AddNewAdmin.php * 068 T Q
©
Wy

SMART PLANTING

Add new Admin

First Name*

Family Name*

Mobile*

Email*

Password*

Figure 28: Admin adding a new admin

29

<

G 0 @ localhosi/smartPlanting/DeleteAdmin.php

0

SMART PLANTING

Delete Admin

Email*

randa1604709@miuesvot.edu.es

Figure 29: Admin deleting an old Admin

G ¥ O localhost/smartPlanting/updatemyself.php

W

SMART PLANTING

Update your info

First Name*

Reem

Family Name*
Osama

Date of Birth*
06/17/1995

Mobile Number*

01096266455

Gender*

Female

[

©

5 0

;;o.e

Figure 30: Landowner Updating her/his INFO

30

&

G Y @ localhost/smartPlanting/AddLand.php % @ @ = o o
Wy :
Add the greenhouse details
SMART PLANTING
City*
Choose the sreenhouse citv v
Area”
Location in details”
Plant Type*
Tomato v
Greenhouse dimensions
Length Width Height
Figure 31: Landowner making a new request with a new land
C @ @ localhost/smartPlanting/ViewAllLands.php * © 3 = °
©
W
SMART PLANTING
View Your Land Requests & Withdraw A Request If You Want
Show 10 : entries Search:
. Greenhouse Plant View Land Update Delete
D 4 Location
Dimensions Type Statistics Request Request
. First settlement. block 5, Ciro, 190%70% 110 Tomato . = 0
New Cairo
2 block 503, Alexandriz, Sidi beshr 550 320x 400 Bell Pepper P =] 1]

Showing 1to 2 of 2 entries

Figure 32: Landowner viewing all his/her lands in the system

31

Wy

SMART PLANTING

View Your Land Requests & Withdraw A Request If You Want

Show 10 $ entries Search:

n } Greenhouse Plant View Update Accept Delete
D . Location reemne
Dimensions Type Request Request

. First settlement, block 5, Cairo, New 120%70x 110 Tomato =

Cairo

Showing 1to 1 of 1 entries

Figure 33: Admin Accept/Reject Landowner’s request for adding new greenhouse

6.3 Screen Objects and Actions

Fig. 17 shows the login page, it has two boxes. The first box is for entering the email address
and the second box is for the password. If you logged in as an admin you will access the screens
in Fig. 20, Fig. 21, Fig. 22, Fig. 23,Fig. 24,Fig. 25Fig. 26, Fig. 27, Fig. 31 and if you logged
in as a landowner you will access the screens in Fig. 28, Fig. 29, Fig. 30.

Fig. 18, Fig. 19 shows sign-up page to let landowners register to the system. Fig. 20 shows how
the admin will be able to edit his/her personal information such as (Username, password, mobile
number, ..). Fig. 21 shows that the admin can view all landowners’ information. Fig. 22 shows
that the admin can view all requests that the landowner sends to add new greenhouse. Fig. 23
shows that the admin can add new plant type by typing it’s name. Fig. 24 shows that the admin
will be able to delete plant type by searching on it’s name. Fig. 25 shows that the admin will be
able to view all the plant types and it’s id. Fig. 26 shows that the admin can add new admins.
Fig. 27 shows that the admin can delete current admins. Fig. 28 shows that the landowner
will be able to edit his/her personal information such as(password, mobile number,...). Fig. 29
shows that the landowner can send request to the admin to add new greenhouse by sending the
greenhouse’s address, which plant type he/she wants to plant and the greenhouse’s dimensions.
Fig. 30 shows that the landowner will be able to view all information about his greenhouses.
Fig. 31 shows that the admin can accept/reject the landowner’s requests to add new greenhouse
to the system.

32

7 Requirements Matrix

Requirement
|]

F1

F2
F3
Fa
F5

F&

F7

F&

Fa

Fld

F1l

Fl12
F13

Fl4

F15

Requirement Mame

Read real-time video
frames.

Save frames into database.

Retrizve framez from
detabass.

Convert REE images to HEY

Extract featurss from
IMaEes
Rumn_SWhClzssifier

Compars testing
percentage with Threshold

Detecting dizeases

Add notification content

Delete notification content

rRead data from sensors

Turn on Fans
Turn off the fan

Turm off LED lights

Logim

Requirement Description

This function extracts frames from
real-time video.

This function is to store frames into
the databasze.

This function is to get the saved
frames from database.

This function is to convert the
images from RGHE to H5Y images.
This function is to extract features
from the HZY images.

Classify the extracted features of
the images by the usage of the
aneClasssvym classifier to show if
there is any tomatoes in the land.
This function is to compare the
percentage of the desired green
range of the plant and the desired
color range of the fruit/wegstable
that the system calculated from
HEW testing images with the pre-
caloulated Threshold percentage
fram the trained datasst.

This function is used to detsct it
there iz a specific disease starts to
appear on the fruit/vegetable.

The admin can 2dd new
notification content that can be
sent to the landowner.

The admin can delste a notification
content that can be sent to the
landowner.

This function is used to take the
readings from the used sensors on
our system.

Turm on Fans

This function is wsed to turn off the
fans according to the readings of
the OHT11 sensar.

This function is used to turn of T the
LED lights after the specifizd time
=nds or the plant is at the
harvesting stags

This function is used to let users
get into the system.

33

Status

Completed

Completed
Completed
Completed
Completed

Completed

Completed

Completed

In Prograss

In Prograss

In progress

In progress
In progress

Completed

Completed

Flg
F17

F18

F22

F23
F24

F25

F2&

F27

F28

F29

F30

F31

F32

F33

F34

F35

F3&6

F37

F38

F33

Fad

Fal

SiEn Up

Encrypt password.

Decrypt password.

Reset password

Logout
wiew growth statistics

wiew all landowners'
informatian.

Add sensor type
Delete sensor typs
wiew all sensor types
£&dd plant type
Delzte plant typs
wview all plant typss
Add user role

Delzte rols

wiew all user roles
£Add LED colar
Delete LED color

view LED colars

&dd time interval

Delzte time interval

view timer interval details

Updzate time interval

This function is to create accounts
for landowners.

This function is used to translate
password into another form to
keep it secured.

This function is used to translate
the password back to its original
form.

Enable the usar to reset his/her
passward.

Engble the ussr to logout.

Shows the rate of plant’s growth
across all the stages it passes by.
Admin will be able to view all
landowners” information.

Admin can add a new sensor to the
SystEm.

Admin can delete 3 senzor from
the system.

Admin can view all the sensors
data in the system.

Admin can add a new plant type to
the system.

Admin can delete a plant from the
SystEMm.

Admin can view 3l the plant data
in the system.

Admin can add a new user role to
the system.

Admin can delete a2 user role from
the system.

Admin can view all the user roles
data in the system.

Adrmin can add & new LED color to

the system.

Adrmin can delete a LED color from
the system.

Adrmin can view 3l the LED colors
in the system.

Admin will able to set a time
interval of a LED cokor to be turnad
on in a specific land.

Adrmin will abls to delete 3 time
interval of a LED color to be turned
on in a specific land.

Admin will able to view all time
intervals in the system

Admin will able to update the time
interval of a LED color to be turned
on in 3 specific land.

34

Completed

Completed

Completed

Completed

Completed
Completed

Completed
In Progress
In Progress
In Progress
Completed
Completed
Completed
In Progress
In Progress
In Progress
In Prograss
In Progress
In Progress

In Progress

In Progress

In Progress

In Prograss

F42

F43

Fa4

F45

F6

Fa7

F48

F49

F50

F51

Add new Admin

Add land request

Update Land Request

Land delete request

Wiew all lands

Admin accept land add

request

Admin reject land add

request

Admin accept land edit

request

Admin reject land edit

request

Admin accept land delete

request

7.1 Test cases

The admin has the ability to add
another admin who will have all
the authority of admins

The land owner can add new land
reguest by filling the required form
The land owner can send a request
it he/she wants to update anything
related to his/her existing land

The landowner will send a request
to delete a certain land that he
oWIS.

The landowner views all his lands
registered in the system.

The Admin will accept the request
of the landowner to add a new
lamdl.

The Admin will reject the request
of the landowner to add a new
lamdl.

The Admin will accept the request
of the landowner to update an
information in his land.

The Admin will reject the request
of the landowner to update an
information in his land.

The Admin will accept the request
of the landowner to delete his
registerad land.

input

Test scenario

Expected Result

Actual result

Pass/Fail

1-FirstName
2-FamilyName
3-DateofBirth
4-Gender
5-Mobile
6-Email
7-password

FirstName,
Family Name
are in English.
The rest entered
correctly

Added in User
table

As expected

Pass

Email doesn’t
exist

Alert message

As gxpected

Pass

Not entering the
mobile number

Alert message

As expected

Pass

Figure 34: Add new admin

35

Completed

Completed

Completed

Completed

Completed

Completed

Completed

In progress

In progress

Completed

input Test scenario Expected Result Actual result Pass/Fail
Plant Name Added in plant As expected Pass
Entered in Arabic | table
DYRIRT
1-PlantName
Leave Plantname | alert message As expected Pass
empty
Figure 35: Add new plant
input Test scenario Expected Result Actual result Pass/Fail
Landowner_IDis | Added in land As expected Pass
found in table table
landowner
1-landOwner_ID | value="1"
2-address_ID
3-location Alert message As expected Pass
4-Length Not entering the
5-width width/height
6-heigth
7-plantType_ID Plant is not found
in plant table Alert message As expected Pass

Figure 36: Add new land request

input Test scenario Expected Result Actual result Pass//Fail
Land ID is found is | Updated in land As expected Pass
land table table
Value”1”

1-land ID

2-Item to be no new value is

updated given for the Updated in Not as expected Fail

3-new value selected item Database

Figure 37: Update land request

36

Requirement ID Requirement Test Cases ID Status
Description

F1 Add new Admin TP1,TP2, TP3 TP1-PASS
TP2-PASS
TP3-PASS

F2 Add new Plant TP11, TP12 TP1-PASS
TP2-PASS
TP3-PASS

F3 Add land request TP21,TP22, TP23 TP21-PASS
TP22-PASS
TP23-PASS

F4 Update Land Request TP31, TP32 TP21-PASS
TP22-PASS
TP23-FAIL

Figure 38: Requirements
References

[1] Xanthoula Eirini Pantazi, Dimitrios Moshou, and Alexandra A Tamouridou. Automated
leaf disease detection in different crop species through image features analysis and one class
classifiers. Computers and electronics in agriculture, 156:96-104, 2019.

37

